File size: 4,746 Bytes
cc50161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import tensorflow.keras as tf
import numpy as np
from sklearn.preprocessing import StandardScaler

verbose = 0


def predict_series(values, r1_nodes=5, r2_nodes=0, fc1_nodes=0, steps=20, use_lstm=True, *args, **kwargs):
    
    train = np.array(values)
    
    train_last_value = train[-1]
    train = train[1:] - train[:-1]
    sc = StandardScaler()
    train = sc.fit_transform(train.reshape(-1, 1))

    T = 25
    X = []
    Y = []
    for t in range(len(train) - T):
        x = train[t:t + T]
        X.append(x)
        Y.append(train[t + T])

    X = np.array(X).reshape(-1, T, 1)
    Y = np.array(Y)

    nb_stats = 0
    """
    X_temp = np.zeros(X.size + nb_stats * len(X)).reshape(-1, T + nb_stats)

    step_size = 1 / (len(X) + steps)


    def update_stats(row):
        new_stat = row[T:]
        new_stat[0] += step_size  # number of sample

        minimum = min(row[:T])  # minimum value, and when it occurred
        if minimum < row[T + 1]:
            new_stat[1], new_stat[2] = minimum, new_stat[0]

        maximum = max(row[:T])  # maximum value, and when it occurred
        if maximum > row[T + 3]:
            new_stat[3], new_stat[4] = maximum, new_stat[0]
        
        new_stat[5] = (row[T + 5] * row[T] + row[T - 1]) / (new_stat[0])  # rolling average

        difference10 = row[T - 1] - row[T - 11]  # the biggest difference within 10 items
        if difference10 > row[T + 6]:
            new_stat[6], new_stat[7] = difference10, new_stat[0]
        if difference10 < row[T + 8]:
            new_stat[8], new_stat[9] = difference10, new_stat[0]

        abs_difference10 = abs(difference10)  # the biggest absolute difference within 10 items
        if abs_difference10 > row[T + 10]:
            new_stat[10], new_stat[11] = abs_difference10, new_stat[0]
        if abs_difference10 < row[T + 12]:
            new_stat[12], new_stat[13] = abs_difference10, new_stat[0]
        
        return new_stat

    X_temp[0] = X[0]  #np.append(X[0])#, [0, np.inf, 0, -np.inf, 0])  #, 0, -np.inf, 0, +np.inf, 0, 0, 0, np.inf, 0])
    for i in range(1, len(X)):
        X_temp[i] = np.append(X[i][:T], X_temp[i - 1][T:])
        X_temp[i][T:] = update_stats(X_temp[i])
    """
    #X = X_temp[1:].reshape(-1, T + nb_stats, 1)
    #Y = Y[1:]

    i = tf.layers.Input(shape=(T + nb_stats, 1))
    
    if use_lstm:
        rnn_layer = tf.layers.LSTM
    else:
        rnn_layer = tf.layers.GRU

    if r2_nodes:
        x = rnn_layer(r1_nodes, return_sequences=True)(i)
        x = rnn_layer(r2_nodes)(x)
    else:
        x = rnn_layer(r1_nodes)(i)
    if fc1_nodes:
        x = tf.layers.Dense(fc1_nodes, activation='relu')(x)
    x = tf.layers.Dense(1)(x)
    model = tf.models.Model(i, x)
    
    
    """lr_schedule = tf.optimizers.schedules.ExponentialDecay(
        initial_learning_rate=0.2,
        decay_steps=10,
        decay_rate=0.8)
    optimizer = tf.optimizers.Ftrl(learning_rate=0.001, learning_rate_power=-0.1)"""
    #for i in range(0, 500, 10):
        #print('{}: {}'.format(i, lr_schedule(i)))
    
    
    model.compile(
        loss='mse', #tf.losses.LogCosh(),
        optimizer=tf.optimizers.Adamax(lr=0.1) #LogCosh()'sgd'
    )

    callbacks = [tf.callbacks.EarlyStopping(patience=150, monitor='loss', restore_best_weights=True)]

    r = model.fit(
        X, Y,
        epochs=500,
        callbacks=callbacks,
        verbose=verbose,
        validation_split=0.0
    )
    pred = np.array([])
    last_x = X[-1]


    for _ in range(steps):
        p = model.predict(last_x.reshape(1, -1, 1))[0, 0]
        pred = np.append(pred, p)
        #last_x[:T] = np.roll(last_x[:T], -1)
        #last_x[T - 1] = p
        #last_x[T:] = update_stats(last_x)
        last_x = np.roll(last_x, -1)
        last_x[-1] = p

    pred = sc.inverse_transform(pred.reshape(-1, 1))
    # pred = np.array(pred).astype('float64')
    # pred = list(pred)
    # logging.info(pred)
    
    pred.reshape(-1)
    pred[0] = train_last_value + pred[0]
    
    for i in range(1, len(pred)):
        pred[i] += pred[i-1]
    

    result = {'result': list(pred.reshape(-1)), 'epochs': r.epoch[-1] + 1, 'loss': min(r.history['loss']), 'loss_last': r.history['loss'][-1]}
    return result


if __name__ == "__main__":
    from time import time
    t1 = time()
    verbose = 2
    data = np.sin(np.arange(0.0, 28.0, 0.35)*2)
    result = predict_series(data, steps=66, r1_nodes=14, r2_nodes=14, fc1_nodes=20)
    print('exec time: {:8.3f}'.format(time()-t1))
    #print(result['result'][:2])
    print(print(result['epochs'], result['loss']))
    import seaborn as sns
    sns.lineplot(x=range(30), y=data[-30:], color='r')
    sns.lineplot(x=range(30, 30+len(result['result'])), y=result['result'], color='b')