File size: 17,411 Bytes
59ee13b
bf2495a
 
 
 
 
 
 
 
 
 
87b4a1a
 
bf2495a
 
882873e
bf2495a
b47e7c8
 
bf2495a
f493b13
bf2495a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0bcfb
bf2495a
 
ee0bcfb
bf2495a
 
 
 
 
93b410f
bf2495a
 
cf35ebe
 
bf2495a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0bcfb
f732e49
ee0bcfb
93b410f
bf2495a
 
 
 
93b410f
bf2495a
 
 
 
 
02742e5
bf2495a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
882873e
 
 
 
 
bf2495a
 
8df3de7
bf2495a
 
 
f493b13
bf2495a
 
 
 
 
60efe0d
882873e
bf2495a
 
 
 
 
 
 
 
 
 
 
882873e
bf2495a
 
 
 
 
882873e
bf2495a
cf35ebe
 
 
bf2495a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f493b13
bf2495a
 
882873e
bf2495a
 
f493b13
bf2495a
 
 
 
 
 
882873e
f493b13
bf2495a
 
 
 
 
 
 
 
 
 
 
 
882873e
 
bf2495a
 
 
 
 
 
 
882873e
bf2495a
 
 
 
 
 
 
 
 
 
 
882873e
 
 
 
 
bf2495a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
882873e
bf2495a
 
 
 
 
882873e
bf2495a
 
 
882873e
bf2495a
41a92c7
bf2495a
3b49dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2495a
 
 
 
 
 
 
 
 
 
 
 
 
882873e
bf2495a
 
 
f17a90e
bf2495a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import spaces
from typing import Tuple, Union, List
import os

import numpy as np
from PIL import Image

import torch
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
from colors import ade_palette
from utils import map_colors_rgb
from diffusers import StableDiffusionXLPipeline
import gradio as gr
import gc

device = "cuda"
dtype = torch.float16

        
css = """
#img-display-container {
    max-height: 50vh;
    }
#img-display-input {
    max-height: 40vh;
    }
#img-display-output {
    max-height: 40vh;
    }

"""


def filter_items(
    colors_list: Union[List, np.ndarray],
    items_list: Union[List, np.ndarray],
    items_to_remove: Union[List, np.ndarray]
) -> Tuple[Union[List, np.ndarray], Union[List, np.ndarray]]:
    """
    Filters items and their corresponding colors from given lists, excluding
    specified items.

    Args:
        colors_list: A list or numpy array of colors corresponding to items.
        items_list: A list or numpy array of items.
        items_to_remove: A list or numpy array of items to be removed.

    Returns:
        A tuple of two lists or numpy arrays: filtered colors and filtered
        items.
    """
    filtered_colors = []
    filtered_items = []
    for color, item in zip(colors_list, items_list):
        if item not in items_to_remove:
            filtered_colors.append(color)
            filtered_items.append(item)
    return filtered_colors, filtered_items

def get_segmentation_pipeline(
) -> Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]:
    """Method to load the segmentation pipeline
    Returns:
        Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]: segmentation pipeline
    """
    image_processor = AutoImageProcessor.from_pretrained(
        "openmmlab/upernet-convnext-small"
    )
    image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
        "openmmlab/upernet-convnext-small"
    )
    return image_processor, image_segmentor


@torch.inference_mode()
@spaces.GPU
def segment_image(
        image: Image,
        image_processor: AutoImageProcessor,
        image_segmentor: UperNetForSemanticSegmentation
) -> Image:
    """
    Segments an image using a semantic segmentation model.

    Args:
        image (Image): The input image to be segmented.
        image_processor (AutoImageProcessor): The processor to prepare the
            image for segmentation.
        image_segmentor (UperNetForSemanticSegmentation): The semantic
            segmentation model used to identify different segments in the image.

    Returns:
        Image: The segmented image with each segment colored differently based
            on its identified class.
    """
    # image_processor, image_segmentor = get_segmentation_pipeline()
    pixel_values = image_processor(image, return_tensors="pt").pixel_values
    with torch.no_grad():
        outputs = image_segmentor(pixel_values)

    seg = image_processor.post_process_semantic_segmentation(
        outputs, target_sizes=[image.size[::-1]])[0]
    color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
    palette = np.array(ade_palette())
    for label, color in enumerate(palette):
        color_seg[seg == label, :] = color
    color_seg = color_seg.astype(np.uint8)
    seg_image = Image.fromarray(color_seg).convert('RGB')
    return seg_image


def get_depth_pipeline():
    feature_extractor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf",
                                                           torch_dtype=dtype)
    depth_estimator = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf",
                                                                  torch_dtype=dtype)
    return feature_extractor, depth_estimator


@torch.inference_mode()
@spaces.GPU
def get_depth_image(
        image: Image,
        feature_extractor: AutoImageProcessor,
        depth_estimator: AutoModelForDepthEstimation
) -> Image:
    image_to_depth = feature_extractor(images=image, return_tensors="pt").to(device)
    with torch.no_grad():
        depth_map = depth_estimator(**image_to_depth).predicted_depth

    width, height = image.size
    depth_map = torch.nn.functional.interpolate(
        depth_map.unsqueeze(1).float(),
        size=(height, width),
        mode="bicubic",
        align_corners=False,
    )
    depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_map = (depth_map - depth_min) / (depth_max - depth_min)
    image = torch.cat([depth_map] * 3, dim=1)

    image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
    image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
    return image


def resize_dimensions(dimensions, target_size):
    """ 
    Resize PIL to target size while maintaining aspect ratio 
    If smaller than target size leave it as is
    """
    width, height = dimensions

    # Check if both dimensions are smaller than the target size
    if width < target_size and height < target_size:
        return dimensions

    # Determine the larger side
    if width > height:
        # Calculate the aspect ratio
        aspect_ratio = height / width
        # Resize dimensions
        return (target_size, int(target_size * aspect_ratio))
    else:
        # Calculate the aspect ratio
        aspect_ratio = width / height
        # Resize dimensions
        return (int(target_size * aspect_ratio), target_size)


def flush():
    gc.collect()
    torch.cuda.empty_cache()
    
    
class ControlNetDepthDesignModelMulti:
    """ Produces random noise images """
    
    def __init__(self):
        """ Initialize your model(s) here """
        #os.environ['HF_HUB_OFFLINE'] = "True"
        
        self.seed = 323*111
        self.neg_prompt = "window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner"
        self.control_items = ["windowpane;window", "door;double;door"]
        self.additional_quality_suffix = "interior design, 4K, high resolution, photorealistic"
        
    @spaces.GPU
    def generate_design(self, empty_room_image: Image, prompt: str, guidance_scale: int = 10, num_steps: int = 50, strength: float =0.9, img_size: int = 640) -> Image:
        """
        Given an image of an empty room and a prompt
        generate the designed room according to the prompt
        Inputs - 
            empty_room_image - An RGB PIL Image of the empty room
            prompt - Text describing the target design elements of the room
        Returns - 
            design_image - PIL Image of the same size as the empty room image
                           If the size is not the same the submission will fail.
        """
        print(prompt)
        flush()
        self.generator = torch.Generator(device=device).manual_seed(self.seed)

        pos_prompt = prompt + f', {self.additional_quality_suffix}'

        orig_w, orig_h = empty_room_image.size
        new_width, new_height = resize_dimensions(empty_room_image.size, img_size)
        input_image = empty_room_image.resize((new_width, new_height))
        real_seg = np.array(segment_image(input_image,
                                          seg_image_processor,
                                          image_segmentor))
        unique_colors = np.unique(real_seg.reshape(-1, real_seg.shape[2]), axis=0)
        unique_colors = [tuple(color) for color in unique_colors]
        segment_items = [map_colors_rgb(i) for i in unique_colors]
        chosen_colors, segment_items = filter_items(
            colors_list=unique_colors,
            items_list=segment_items,
            items_to_remove=self.control_items
        )
        mask = np.zeros_like(real_seg)
        for color in chosen_colors:
            color_matches = (real_seg == color).all(axis=2)
            mask[color_matches] = 1

        image_np = np.array(input_image)
        image = Image.fromarray(image_np).convert("RGB")
        mask_image = Image.fromarray((mask * 255).astype(np.uint8)).convert("RGB")
        segmentation_cond_image = Image.fromarray(real_seg).convert("RGB")

        image_depth = get_depth_image(image, depth_feature_extractor, depth_estimator)

        # generate image that would be used as IP-adapter
        flush()
        new_width_ip = int(new_width / 8) * 8
        new_height_ip = int(new_height / 8) * 8
        ip_image = guide_pipe(pos_prompt,
                                   num_inference_steps=num_steps,
                                   negative_prompt=self.neg_prompt,
                                   height=new_height_ip,
                                   width=new_width_ip,
                                   generator=[self.generator]).images[0]

        flush()
        generated_image = pipe(
            prompt=pos_prompt,
            negative_prompt=self.neg_prompt,
            num_inference_steps=num_steps,
            strength=strength,
            guidance_scale=guidance_scale,
            generator=[self.generator],
            image=image,
            mask_image=mask_image,
            ip_adapter_image=ip_image,
            control_image=[image_depth, segmentation_cond_image],
            controlnet_conditioning_scale=[0.5, 0.5]
        ).images[0]
        
        flush()
        design_image = generated_image.resize(
            (orig_w, orig_h), Image.Resampling.LANCZOS
        )
        
        return design_image


def create_demo(model):
    gr.Markdown("### Stable Design demo")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input')
            input_text = gr.Textbox(label='Prompt', placeholder='Please upload your image first', lines=2)
            with gr.Accordion('Advanced options', open=False):
                num_steps = gr.Slider(label='Steps',
                                      minimum=1,
                                      maximum=50,
                                      value=50,
                                      step=1)
                img_size = gr.Slider(label='Image size',
                                      minimum=256,
                                      maximum=768,
                                      value=768,
                                      step=64)
                guidance_scale = gr.Slider(label='Guidance Scale',
                                           minimum=0.1,
                                           maximum=30.0,
                                           value=10.0,
                                           step=0.1)
                seed = gr.Slider(label='Seed',
                                 minimum=-1,
                                 maximum=2147483647,
                                 value=323*111,
                                 step=1,
                                 randomize=True)
                strength = gr.Slider(label='Strength',
                                           minimum=0.1,
                                           maximum=1.0,
                                           value=0.9,
                                           step=0.1)
                a_prompt = gr.Textbox(
                    label='Added Prompt',
                    value="interior design, 4K, high resolution, photorealistic")
                n_prompt = gr.Textbox(
                    label='Negative Prompt',
                    value="window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner")
            submit = gr.Button("Submit")
        
        with gr.Column():
            design_image = gr.Image(label="Output Mask", elem_id='img-display-output')
    
    
    def on_submit(image, text, num_steps, guidance_scale, seed, strength, a_prompt, n_prompt, img_size):
        model.seed = seed
        model.neg_prompt = n_prompt
        model.additional_quality_suffix = a_prompt
        
        with torch.no_grad():
            out_img = model.generate_design(image, text, guidance_scale=guidance_scale, num_steps=num_steps, strength=strength, img_size=img_size)

        return out_img

    submit.click(on_submit, inputs=[input_image, input_text, num_steps, guidance_scale, seed, strength, a_prompt, n_prompt, img_size], outputs=design_image)
    examples = gr.Examples(examples=[["imgs/bedroom_1.jpg", "An elegantly appointed bedroom in the Art Deco style, featuring a grand king-size bed with geometric bedding, a luxurious velvet armchair, and a mirrored nightstand that reflects the room's opulence. Art Deco-inspired artwork adds a touch of glamour"], ["imgs/bedroom_2.jpg", "A bedroom that exudes French country charm with a soft upholstered bed, walls adorned with floral wallpaper, and a vintage wooden wardrobe. A crystal chandelier casts a warm, inviting glow over the space"], ["imgs/dinning_room_1.jpg", "A cozy dining room that captures the essence of rustic charm with a solid wooden farmhouse table at its core, surrounded by an eclectic mix of mismatched chairs. An antique sideboard serves as a statement piece, and the ambiance is warmly lit by a series of quaint Edison bulbs dangling from the ceiling"], ["imgs/dinning_room_3.jpg", "A dining room that epitomizes contemporary elegance, anchored by a sleek, minimalist dining table paired with stylish modern chairs. Artistic lighting fixtures create a focal point above, while the surrounding minimalist decor ensures the space feels open, airy, and utterly modern"], ["imgs/image_1.jpg", "A glamorous master bedroom in Hollywood Regency style, boasting a plush tufted headboard, mirrored furniture reflecting elegance, luxurious fabrics in rich textures, and opulent gold accents for a touch of luxury."], ["imgs/image_2.jpg", "A vibrant living room with a tropical theme, complete with comfortable rattan furniture, large leafy plants bringing the outdoors in, bright cushions adding pops of color, and bamboo blinds for natural light control."], ["imgs/living_room_1.jpg", "A stylish living room embracing mid-century modern aesthetics, featuring a vintage teak coffee table at its center, complemented by a classic sunburst clock on the wall and a cozy shag rug underfoot, creating a warm and inviting atmosphere"]],
                           inputs=[input_image, input_text], cache_examples=False)


controlnet_depth= ControlNetModel.from_pretrained(
    "controlnet_depth", torch_dtype=dtype, use_safetensors=True)
controlnet_seg = ControlNetModel.from_pretrained(
    "own_controlnet", torch_dtype=dtype, use_safetensors=True)

pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V5.1_noVAE",
    #"models/runwayml--stable-diffusion-inpainting",
    controlnet=[controlnet_depth, controlnet_seg],
    safety_checker=None,
    torch_dtype=dtype
)

pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
                     weight_name="ip-adapter_sd15.bin")
pipe.set_ip_adapter_scale(0.4)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(device)
guide_pipe = StableDiffusionXLPipeline.from_pretrained("segmind/SSD-1B",
                                                       torch_dtype=dtype, use_safetensors=True, variant="fp16")
guide_pipe = guide_pipe.to(device)
   
seg_image_processor, image_segmentor = get_segmentation_pipeline()
depth_feature_extractor, depth_estimator = get_depth_pipeline()
depth_estimator = depth_estimator.to(device)


def main():
    model = ControlNetDepthDesignModelMulti()
    print('Models uploaded successfully')
    
    title = "# StableDesign"
    description = """
    <p style='font-size: 14px; margin-bottom: 10px;'><a href='https://www.linkedin.com/in/mykola-lavreniuk/'>Mykola Lavreniuk</a>, <a href='https://www.linkedin.com/in/bartosz-ludwiczuk-a677a760/'>Bartosz Ludwiczuk</a></p>
    <p style='font-size: 16px; margin-bottom: 0px; margin-top=0px;'>Official demo for <strong>StableDesign:</strong> 2nd place solution for the Generative Interior Design 2024 <a href='https://www.aicrowd.com/challenges/generative-interior-design-challenge-2024/leaderboards?challenge_round_id=1314'>competition</a>. StableDesign is a deep learning model designed to harness the power of AI, providing innovative and creative tools for designers. Using our algorithms, images of empty rooms can be transformed into fully furnished spaces based on text descriptions. Please refer to our <a href='https://github.com/Lavreniuk/generative-interior-design'>GitHub</a> for more details.</p>
    """
    with gr.Blocks() as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        
        create_demo(model)
        gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/MykolaL/StableDesign?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
                <p><img src="https://visitor-badge.glitch.me/badge?page_id=MykolaL/StableDesign" alt="visitors"></p></center>''')

    demo.queue().launch(share=False)


if __name__ == '__main__':
    main()