File size: 13,664 Bytes
f9632a1 f6aaf96 f9632a1 6bc36dc f9632a1 6bc36dc f9632a1 f6aaf96 f9632a1 f6aaf96 f9632a1 379ee2c 9d422fc fc73403 379ee2c fc73403 379ee2c fc73403 6d3a753 fc73403 379ee2c fc73403 379ee2c fc73403 9d422fc fc73403 84cdcf9 fc73403 9d422fc fc73403 6d3a753 fc73403 9d422fc fc73403 6d3a753 fc73403 9d422fc f9632a1 f6aaf96 f9632a1 4fdac55 f6aaf96 f9632a1 f6aaf96 f9632a1 f6aaf96 f9632a1 08c07a3 f6aaf96 6d3a753 f9632a1 6d3a753 f6aaf96 f9632a1 f6aaf96 6d3a753 f9632a1 f6aaf96 f9632a1 f6aaf96 f9632a1 6d3a753 f9632a1 6bc36dc f2c6a14 f9632a1 f2c6a14 4fdac55 f2c6a14 f9632a1 f2c6a14 f9632a1 f6aaf96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import gradio as gr
from transformers import pipeline
from wordcloud import WordCloud, STOPWORDS
from youtubesearchpython import *
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import re
import io
from io import BytesIO
import time
sentiment_task = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", tokenizer="cardiffnlp/twitter-roberta-base-sentiment-latest")
def extract_youtube_video_id(url_or_id):
"""
Extracts the YouTube video ID from a given URL or returns the ID if a direct ID is provided.
Args:
url_or_id (str): A YouTube URL or a video ID.
Returns:
str: The extracted YouTube video ID.
"""
# Check if it's already a valid YouTube ID (typically 11 characters)
if len(url_or_id) == 11 and not re.search(r'[^0-9A-Za-z_-]', url_or_id):
return url_or_id
# Regular expressions for various YouTube URL formats
regex_patterns = [
r'(?:https?://)?www\.youtube\.com/watch\?v=([0-9A-Za-z_-]{11})',
r'(?:https?://)?youtu\.be/([0-9A-Za-z_-]{11})',
r'(?:https?://)?www\.youtube\.com/embed/([0-9A-Za-z_-]{11})',
r'(?:https?://)?www\.youtube\.com/v/([0-9A-Za-z_-]{11})',
r'(?:https?://)?www\.youtube\.com/shorts/([0-9A-Za-z_-]{11})'
]
# Try each regex pattern to find a match
for pattern in regex_patterns:
match = re.search(pattern, url_or_id)
if match:
return match.group(1)
# If no pattern matches, return an error or a specific message
return "Invalid YouTube URL or ID"
def comments_collector(video_link, max_comments = 50):
# This function collects comments from a given YouTube video link.
# It uses the youtubesearchpython library to extract comments and pandas for data manipulation.
# Args:
# video_link (str): The YouTube video link from which to collect comments.
# max_comments (int, optional): The maximum number of comments to retrieve. Defaults to 50.
# Returns:
# pandas.DataFrame: A DataFrame containing the comments, or None in case of an exception.
video_id = extract_youtube_video_id(video_link)
max_comments -= 1
try:
#load the first 20 comments
comments = Comments(video_id)
print(f'Comments Retrieved and Loading...')
#load more comments, 20 at a time, until the limit is reached
while comments.hasMoreComments and (len(comments.comments["result"]) <= max_comments):
comments.getNextComments()
print(f'Found all the {len(comments.comments["result"])} comments.')
#load all the comments into "comments" variable
comments = comments.comments
#define data list for collecting comments for a particular video
data = []
#loop through all the comments
for i in range(len(comments['result'])):
#############################################################################
is_author = comments['result'][i]['authorIsChannelOwner']
#check if the comment is from the video author or not -> neglect if so.
if is_author:
pass
#############################################################################
#comment comes from others, we will save this comment.
else:
comment_dict = {}
comment_id = comments['result'][i]['id']
author = comments['result'][i]['author']['name']
content = comments['result'][i]['content']
#############################################################################
#cleaning comments likes (e.g., convert 10K likes to 10000, convert None like to 0)
if comments['result'][i]['votes']['label'] is None:
likes = 0
else:
likes = comments['result'][i]['votes']['label'].split(' ')[0]
if 'K' in likes:
likes = int(float(likes.replace('K', '')) * 1000)
#############################################################################
#cleaning comments reply count
replyCount = comments['result'][i]['replyCount']
#if there is no reply, we will log it as 0
if replyCount is None:
comment_dict['replyCount'] = 0
#otherwise, we will log as integer
else:
comment_dict['replyCount'] = int(replyCount)
#############################################################################
comment_dict['comment_id'] = comment_id
comment_dict['author'] = author
comment_dict['content'] = content
comment_dict['likes'] = likes
data.append(comment_dict)
#############################################################################
print(f'Excluding author comments, we ended up with {len(data)} comments')
return pd.DataFrame(data)
except Exception as e:
print(e)
return None
def comments_analyzer(comments_df):
# This function analyzes the sentiment of comments in a given DataFrame.
# It requires a DataFrame of comments, typically generated by the comments_collector function.
# Args:
# comments_df (pandas.DataFrame): A DataFrame containing YouTube comments.
# Returns:
# dict: A dictionary with analysis results, including sentiment counts and percentages, or None if input is None.
# The function applies a sentiment analysis task on each comment and categorizes them as positive, neutral, or negative.
# It also calculates the percentage of positive comments and blends all comments into a single string.
if comments_df is None:
return None
else:
start_time = time.time()
# Example of batch processing with sentiment and confidence
batch_size = 20 # Adjust the size based on your system's capabilities
sentiments = []
scores = []
for i in range(0, len(comments_df), batch_size):
batch = comments_df['content'][i:i+batch_size].tolist()
batch_results = sentiment_task(batch)
# Extracting both sentiment labels and scores
batch_sentiments = [item['label'] for item in batch_results]
batch_scores = [item['score'] for item in batch_results]
sentiments.extend(batch_sentiments)
scores.extend(batch_scores)
comments_df['sentiment'] = sentiments
comments_df['score'] = scores
end_time = time.time()
print(f"Time taken for batch sentiment analysis: {end_time - start_time} seconds")
def get_top_comments(comments, sentiment_type, top_n=5):
filtered_comments = comments[comments['sentiment'] == sentiment_type]
top_comments = filtered_comments.nlargest(top_n, 'score')
if not top_comments.empty:
return '\n\n'.join(f"{row['content']} - {row['author']}" for _, row in top_comments.iterrows())
else:
return f"No {sentiment_type} comments available."
start_time = time.time()
# Get top positive comments
top_positive_comments = get_top_comments(comments_df, 'positive')
# Get top negative comments
top_negative_comments = get_top_comments(comments_df, 'negative')
end_time = time.time()
print(f"Time taken for finding top n positive/negative comments: {end_time - start_time} seconds")
data = {}
#Categorize the comments by sentiment and count them
data['total_comments'] = len(comments_df)
data['num_positive'] = comments_df['sentiment'].value_counts().get('positive', 0)
data['num_neutral'] = comments_df['sentiment'].value_counts().get('neutral', 0)
data['num_negative'] = comments_df['sentiment'].value_counts().get('negative', 0)
#blend all the comments
data['blended_comments'] = comments_df['content'].str.cat(sep=' ')
data['pct_positive'] = 100 * round(data['num_positive']/data['total_comments'], 2)
return data, top_positive_comments, top_negative_comments
def generate_wordcloud(long_text, additional_stopwords=['Timestamps', 'timestamps']):
# This function generates a word cloud image from a given text and returns it as a PIL image object.
# Args:
# long_text (str): The text from which to generate the word cloud.
# additional_stopwords (list, optional): A list of words to be excluded from the word cloud.
# The function creates a word cloud with specified font size, word limit, and background color.
# It then converts the matplotlib plot to a PIL Image object for further use or saving.
# Returns:
# PIL.Image: The generated word cloud as a PIL image object.
#Call the default STOPWORDS from wordcloud library
stopwords = set(STOPWORDS)
#Combine the default STOPWORDS with the manually specified STOPWORDS to exclude them from the wordcloud.
all_stopwords = stopwords.union(additional_stopwords)
# Create a Word Cloud
wordcloud = WordCloud(max_font_size=50, max_words=20, background_color="black", stopwords=all_stopwords, colormap='plasma').generate(long_text)
# Create a figure
plt.figure(figsize=(10,10), facecolor=None)
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.tight_layout(pad=0)
# Save to a BytesIO object
img_buf = io.BytesIO()
plt.savefig(img_buf, format='png', bbox_inches='tight', pad_inches=0)
img_buf.seek(0)
# Close the plt figure to prevent display
plt.close()
# Use PIL to open the image from the BytesIO object
image = Image.open(img_buf)
return image
def create_sentiment_analysis_chart(data):
# This function creates a bar chart for sentiment analysis results and returns it as a PIL image object.
# Args:
# data (dict): A dictionary containing the count of positive, negative, and neutral comments.
# The function first converts the input data into a pandas DataFrame.
# It then creates a bar chart using matplotlib, setting specific colors for different sentiment types.
# Titles, labels, and legends are added for clarity.
# Finally, the plot is saved to a BytesIO object and converted to a PIL image.
# Returns:
# PIL.Image: The sentiment analysis bar chart as a PIL image object.
# Convert the data to a DataFrame
df = {}
df['num_positive'] = data['num_positive']
df['num_negative'] = data['num_negative']
df['num_neutral'] = data['num_neutral']
df = pd.DataFrame(df, index=[0])
# Plotting
plt.figure(figsize=(8, 6))
bar_colors = ['green', 'red', 'blue'] # Colors for positive, negative, neutral
df.plot(kind='bar', color=bar_colors, legend=True)
# Adding titles and labels
plt.title('Sentiment Analysis Results')
plt.xlabel('Sentiment Types')
plt.ylabel('Number of Comments')
plt.xticks(ticks=[0], labels=['Sentiments'], rotation=0) # Adjust x-ticks
plt.legend(['Positive', 'Negative', 'Neutral'])
# Save the plot to a BytesIO object
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# Close the plt figure to prevent display
plt.close()
# Use PIL to open the image from the BytesIO object
image = Image.open(buf)
return image
############################################################################################################################################
# The code for processing the YouTube link, generating the word cloud, summary, and sentiment analysis
# should be defined here (using your existing functions).
def process_youtube_comments(youtube_link, max_comments, stop_words):
# Process the YouTube link and generate the word cloud, summary, and sentiment analysis
start_time = time.time()
# Pull comments from the YouTube Video
comments_df = comments_collector(video_link=youtube_link, max_comments=max_comments)
end_time = time.time()
print(f"Time taken for loading comments: {end_time - start_time} seconds")
# Analyze
analysis_dict, top_positive_comments, top_negative_comments = comments_analyzer(comments_df)
long_text = analysis_dict['blended_comments']
start_time = time.time()
# Generate word cloud
word_cloud_img = generate_wordcloud(long_text, additional_stopwords=['Timestamps', 'timestamps'])
end_time = time.time()
print(f"Time taken for generating word clouds: {end_time - start_time} seconds")
start_time = time.time()
# Create Sentiment Chart
sentiment_chart = create_sentiment_analysis_chart(analysis_dict)
end_time = time.time()
print(f"Time taken for creating sentiment chart: {end_time - start_time} seconds")
# Return the generated word cloud image, summary text, and sentiment analysis chart
return word_cloud_img, top_positive_comments, top_negative_comments, sentiment_chart
############################################################################################################################################
# Gradio interface
interface = gr.Interface(
fn=process_youtube_comments,
inputs=[
gr.Textbox(label="YouTube Video Link"),
gr.Number(label="Maximum Comments", value=50),
gr.Textbox(label="Words to exclude from cloud (comma-separated)")
],
outputs=[
gr.Image(label="Word Cloud βοΈ"),
gr.Textbox(label="Top 5 Positive Comments ππ»"),
gr.Textbox(label="Top 5 Negative Comments ππ»"),
gr.Image(label="Sentiment Analysis Chart π")
],
title="YouTube Comments Analyzer π",
description="Enter a YouTube link to generate a word cloud, top positive and negative comments, and sentiment analysis of the comments. \n\n Note: The app is both desktop π₯οΈ/mobile π± compatible. Depending on the amount of comments found, it can take up to 1 - 2 mins to process. Have fun π!"
)
# Run the interface
interface.launch()
############################################################################################################################################ |