Spaces:
Running
Running
File size: 8,129 Bytes
84ddfaa e797f63 84ddfaa e797f63 84ddfaa 028692e e797f63 46c9b40 84ddfaa 46c9b40 84ddfaa e797f63 46c9b40 e797f63 46c9b40 e797f63 46c9b40 e797f63 46c9b40 e797f63 46c9b40 e797f63 46c9b40 e797f63 46c9b40 e797f63 84ddfaa e797f63 84ddfaa 46c9b40 84ddfaa 958a1fd 84ddfaa e797f63 84ddfaa 46c9b40 e797f63 46c9b40 e797f63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import streamlit as st
from streamlit_lottie import st_lottie
import fitz # PyMuPDF
import requests
import os, shutil
import llm_model
SYSTEM_PROMPT = [
"""
You are not Mistral AI, but rather a Q&A bot trained by Krishna Kumar while building a cool side project based on RAG. Whenever asked, you need to answer as Q&A bot.
""",
"""You are a RAG based Document Q&A bot. Based on the input prompt and retrieved context from the vector database you will answer questions that are closer to the context.
If no context was found then, say "I don't know" instead of making up answer on your own. Follow above rules strictly.
"""
]
@st.cache_data(experimental_allow_widgets=True)
def index_document(_llm_object, uploaded_file):
if uploaded_file is not None:
# Specify the folder path where you want to store the uploaded file in the 'assets' folder
assets_folder = "assets/uploaded_files"
if not os.path.exists(assets_folder):
os.makedirs(assets_folder)
# Save the uploaded file to the specified folder
file_path = os.path.join(assets_folder, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getvalue())
file_name = os.path.join(assets_folder, uploaded_file.name)
st.success(f"File '{file_name}' uploaded !")
with st.spinner("Indexing document... This is a free CPU version and may take a while β³"):
retriever = _llm_object.create_vector_db(file_name)
return file_name, retriever
else:
return None, None
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
def is_query_valid(query: str) -> bool:
if not query:
st.error("Please enter a question!")
return False
return True
def init_state() :
if "filename" not in st.session_state:
st.session_state.filename = None
if "messages" not in st.session_state:
st.session_state.messages = []
if "temp" not in st.session_state:
st.session_state.temp = 0.7
if "history" not in st.session_state:
st.session_state.history = [SYSTEM_PROMPT]
if "repetion_penalty" not in st.session_state:
st.session_state.repetion_penalty = 1
if "chat_bot" not in st.session_state:
st.session_state.chat_bot = "Mixtral-8x7B-Instruct-v0.1"
def faq():
st.markdown(
"""
# FAQ
## How does Document Q&A Bot work?
When you upload a document (in Pdf, word, csv or txt format), it will be divided into smaller chunks
and stored in a special type of database called a vector index
that allows for semantic search and retrieval.
When you ask a question, our Q&A bot will first look through the document chunks and find the
most relevant ones using the vector index. This acts as a context to our custom prompt which will be feed to the LLM model.
If the context was not found in the document then, LLM will reply 'I don't know'
## Is my data safe?
Yes, your data is safe. Our bot does not store your documents or
questions. All uploaded data is deleted after you close the browser tab.
## Why does it take so long to index my document?
Since, this is a sample QA bot project that uses open-source model
and doesn't have much resource capabilities like GPU, it may take time
to index your document based on the size of the document.
## Are the answers 100% accurate?
No, the answers are not 100% accurate.
But for most use cases, our QA bot is very accurate and can answer
most questions. Always check with the sources to make sure that the answers
are correct.
"""
)
def sidebar():
with st.sidebar:
st.markdown("## Document Q&A Bot")
st.write("LLM: Mixtral-8x7B-Instruct-v0.1")
#st.success('API key already provided!', icon='β
')
st.markdown("### Set Model Parameters")
# select LLM model
st.session_state.model_name = 'Mixtral-8x7B-Instruct-v0.1'
# set model temperature
st.session_state.temperature = st.slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.7)
st.session_state.top_p = st.slider(label="Top Probablity", min_value=0.0, max_value=1.0, step=0.1, value=0.95)
st.session_state.repetition_penalty = st.slider(label="Repetition Penalty", min_value=0.0, max_value=1.0, step=0.1, value=1.0)
# load model parameters
st.session_state.llm_object = load_model()
st.markdown("---")
# Upload file through Streamlit
st.session_state.uploaded_file = st.file_uploader("Upload a file", type=["pdf", "doc", "docx", "txt"])
_, retriever = index_document(st.session_state.llm_object, st.session_state.uploaded_file)
st.markdown("---")
st.markdown("# About")
st.markdown(
"""QA bot π€ allows you to ask questions about your
documents and get accurate answers with citations."""
)
st.markdown("Created with β€οΈ by Krishna Kumar Yadav")
st.markdown(
"""
- [Email](mailto:krishna158@live.com)
- [LinkedIn](https://www.linkedin.com/in/krishna-kumar-yadav-726831105/)
- [Github](https://github.com/krish-yadav23)
- [LeetCode](https://leetcode.com/KrishnaKumar23/)
"""
)
faq()
return retriever
def chat_box() :
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def generate_chat_stream(prompt, retriever) :
with st.spinner("Fetching relevant answers from source document..."):
response, sources = st.session_state.llm_object.mixtral_chat_inference(prompt, st.session_state.history, st.session_state.temperature,
st.session_state.top_p, st.session_state.repetition_penalty, retriever)
return response, sources
def stream_handler(chat_stream, placeholder) :
full_response = ''
for chunk in chat_stream :
if chunk.token.text!='</s>' :
full_response += chunk.token.text
placeholder.markdown(full_response + "β")
placeholder.markdown(full_response)
return full_response
def show_source(sources) :
with st.expander("Show source") :
for source in sources:
st.info(f"{source}")
# Function to load model parameters
@st.cache_resource()
def load_model():
# create llm object
return llm_model.LlmModel()
st.set_page_config(page_title="Document QA Bot")
#lottie_book = load_lottieurl("https://assets4.lottiefiles.com/temp/lf20_aKAfIn.json")
#st_lottie(lottie_book, speed=1, height=200, key="initial")
# Place the title below the Lottie animation
st.title("Document Q&A Bot π€")
# initialize session state for streamlit app
init_state()
# Left Sidebar
retriever = sidebar()
chat_box()
if prompt := st.chat_input("Ask a question about your document!"):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
try:
chat_stream, sources = generate_chat_stream(prompt, retriever)
with st.chat_message("assistant"):
placeholder = st.empty()
full_response = stream_handler(chat_stream, placeholder)
show_source(sources)
st.session_state.history.append([prompt, full_response])
st.session_state.messages.append({"role": "assistant", "content": full_response})
except Exception as e:
if not st.session_state.uploaded_file:
st.error("Kindly provide the document file by uploading it before posing any questions. Your cooperation is appreciated!")
else:
st.error(e)
|