Spaces:
Running
Running
File size: 11,280 Bytes
28b261d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import os
import gradio as gr
from PIL import Image
import pytesseract
from pdf2image import convert_from_path
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain_groq import ChatGroq
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
import base64
from io import BytesIO
# Set up Groq API Key and LLM
os.environ["GROQ_API_KEY"] = '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'
llm = ChatGroq(
model='llama3-70b-8192',
temperature=0.5,
max_tokens=None,
timeout=None,
max_retries=2
)
# OCR Functions
def ocr_image(image_path, language='eng+guj'):
img = Image.open(image_path)
text = pytesseract.image_to_string(img, lang=language)
return text
def ocr_pdf(pdf_path, language='eng+guj'):
images = convert_from_path(pdf_path)
all_text = ""
for img in images:
text = pytesseract.image_to_string(img, lang=language)
all_text += text + "\n"
return all_text
def ocr_file(file_path):
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension == ".pdf":
text_re = ocr_pdf(file_path, language='guj+eng')
elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]:
text_re = ocr_image(file_path, language='guj+eng')
else:
raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.")
return text_re
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
os.makedirs("faiss_index", exist_ok=True)
vector_store.save_local("faiss_index")
return vector_store
def process_ocr_and_pdf_files(file_paths):
raw_text = ""
for file_path in file_paths:
raw_text += ocr_file(file_path) + "\n"
text_chunks = get_text_chunks(raw_text)
return get_vector_store(text_chunks)
def get_conversational_chain():
template = """You are an intelligent educational assistant specialized in handling queries about documents. You have been provided with OCR-processed text from the uploaded files that contains important educational information.
Core Responsibilities:
1. Language Processing:
- Identify the language of the user's query (English or Gujarati)
- Respond in the same language as the query
- If the query is in Gujarati, ensure the response maintains proper Gujarati grammar and terminology
- For technical terms, provide both English and Gujarati versions when relevant
2. Document Understanding:
- Analyze the OCR-processed text from the uploaded files
- Account for potential OCR errors or misinterpretations
- Focus on extracting accurate information despite possible OCR imperfections
3. Response Guidelines:
- Provide direct, clear answers based solely on the document content
- If information is unclear due to OCR quality, mention this limitation
- For numerical data (dates, percentages, marks), double-check accuracy before responding
- If information is not found in the documents, clearly state: "This information is not present in the uploaded documents"
4. Educational Context:
- Maintain focus on educational queries related to the document content
- For admission-related queries, emphasize important deadlines and requirements
- For scholarship information, highlight eligibility criteria and application processes
- For course-related queries, provide detailed, accurate information from the documents
5. Response Format:
- Structure responses clearly with relevant subpoints when necessary
- For complex information, break down the answer into digestible parts
- Include relevant reference points from the documents when applicable
- Format numerical data and dates clearly
6. Quality Control:
- Verify that responses align with the document content
- Don't make assumptions beyond the provided information
- If multiple interpretations are possible due to OCR quality, mention all possibilities
- Maintain consistency in terminology throughout the conversation
Important Rules:
- Never make up information not present in the documents
- Don't combine information from previous conversations or external knowledge
- Always indicate if certain parts of the documents are unclear due to OCR quality
- Maintain professional tone while being accessible to students and parents
- If the query is out of scope of the uploaded documents, politely redirect to relevant official sources
Context from uploaded documents:
{context}
Chat History:
{history}
Current Question: {question}
Assistant: Let me provide a clear and accurate response based on the uploaded documents...
"""
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
new_vector_store = FAISS.load_local(
"faiss_index", embeddings, allow_dangerous_deserialization=True
)
QA_CHAIN_PROMPT = PromptTemplate(
input_variables=["history", "context", "question"],
template=template
)
qa_chain = RetrievalQA.from_chain_type(
llm,
retriever=new_vector_store.as_retriever(),
chain_type='stuff',
verbose=True,
chain_type_kwargs={
"verbose": True,
"prompt": QA_CHAIN_PROMPT,
"memory": ConversationBufferMemory(memory_key="history", input_key="question"),
}
)
return qa_chain
def process_files_and_query(files, query):
if len(files) > 5:
return "Error: You can upload a maximum of 5 files only."
# Ensure temp directory exists
os.makedirs("temp", exist_ok=True)
# Save uploaded files
file_paths = []
for file in files:
file_path = os.path.join("temp", os.path.basename(file))
with open(file_path, "wb") as f:
f.write(open(file, 'rb').read())
file_paths.append(file_path)
# Process files and create vector store
process_ocr_and_pdf_files(file_paths)
# Perform query
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(query)
chain = get_conversational_chain()
response = chain({"input_documents": docs, "query": query}, return_only_outputs=True)
result = response.get("result", "No result found")
return result
def handle_uploaded_file(uploaded_files, show_in_sidebar=False):
sidebar_content = ""
if len(uploaded_files) > 5:
return "Error: You can upload a maximum of 5 files only."
# If the uploaded_files is a list, process each file
for uploaded_file in uploaded_files:
# Determine the file extension
file_extension = os.path.splitext(uploaded_file.name)[1].lower()
file_path = os.path.join("temp", uploaded_file.name)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Check if the uploaded file is in 'NamedString' format (Gradio sometimes returns it this way)
if isinstance(uploaded_file, gr.File):
# In this case, read the file directly from the 'data' attribute
file_data = uploaded_file.read() # This is the file content in bytes
# Save the file content to a local file
with open(file_path, "wb") as f:
f.write(file_data)
if file_extension == ".pdf":
# Read and encode the PDF as base64 to embed in the sidebar
with open(file_path, "rb") as pdf_file:
pdf_data = pdf_file.read()
pdf_base64 = base64.b64encode(pdf_data).decode('utf-8')
sidebar_content += f'<iframe src="data:application/pdf;base64,{pdf_base64}" width="500" height="500"></iframe>'
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
# Display image in the sidebar
img = Image.open(file_path)
img_byte_array = BytesIO()
img.save(img_byte_array, format="PNG")
img_byte_array.seek(0)
sidebar_content += f'<img src="data:image/png;base64,{base64.b64encode(img_byte_array.getvalue()).decode()}" width="400" height="400"/>'
else:
# For text files, show the file content
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
sidebar_content += f"<pre>{content}</pre>"
return sidebar_content
# Gradio interface setup
def upload_and_display(files):
if len(files) > 5:
return "Error: You can upload a maximum of 5 files only."
sidebar_content = handle_uploaded_file(files, show_in_sidebar=True)
return sidebar_content
def launch_gradio_app():
with gr.Blocks() as demo:
gr.Markdown("# Document OCR and Q&A Assistant")
with gr.Row():
with gr.Column(scale=1): # Main content area (adjusted scale to an integer)
file_input = gr.File(
file_count="multiple",
type="filepath", # Changed from 'filepath' to 'file'
file_types=[".pdf", ".jpg", ".jpeg", ".png", ".bmp"],
label="Upload Documents (PDF/Images)"
)
query_input = gr.Textbox(
label="Ask a Question about the Documents",
lines=3
)
submit_btn = gr.Button("Process and Query")
output = gr.Textbox(label="Answer", lines=5)
submit_btn.click(
fn=process_files_and_query,
inputs=[file_input, query_input],
outputs=[output]
)
with gr.Column(scale=1): # Sidebar (adjusted scale to an integer)
gr.Markdown("## Sidebar")
file_preview = gr.HTML(label="File Preview") # Display the preview content here
file_input.change(fn=upload_and_display, inputs=file_input, outputs=file_preview)
return demo
# Launch the Gradio app
if __name__ == "__main__":
app = launch_gradio_app()
app.launch(share=True) # Set share=True to create a public link
# # Launch the Gradio app
# if __name__ == "__main__":
# app = launch_gradio_app()
# # app.launch()
# app.launch(share=True)
# demo.launch() |