Spaces:
Running
Running
File size: 4,183 Bytes
de41fea 5de3ec5 de41fea 5de3ec5 de41fea 20fef4b de41fea 3a8be35 20fef4b de41fea 20fef4b de41fea 5de3ec5 de41fea 5de3ec5 de41fea 5de3ec5 de41fea 20fef4b de41fea 20fef4b de41fea 0473607 5de3ec5 0473607 5de3ec5 0473607 bb90c13 0473607 5de3ec5 0473607 bb90c13 0473607 5de3ec5 0473607 5de3ec5 bb90c13 0473607 bb90c13 0473607 bb90c13 0473607 bb90c13 0473607 bb90c13 0473607 bb90c13 0473607 5de3ec5 de41fea 5de3ec5 de41fea 20fef4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import os
import gradio as gr
import outetts
from outetts.version.v2.interface import _DEFAULT_SPEAKERS
import torch
import spaces
def get_available_speakers():
speakers = list(_DEFAULT_SPEAKERS.keys())
return speakers
def cleanup_cuda():
torch.cuda.empty_cache()
if torch.cuda.is_available():
torch.cuda.synchronize()
@spaces.GPU
def generate_tts(text, temperature, repetition_penalty, speaker_selection, reference_audio):
# Clear CUDA cache before starting
cleanup_cuda()
try:
model_config = outetts.HFModelConfig_v2(
model_path="OuteAI/OuteTTS-0.3-1B",
tokenizer_path="OuteAI/OuteTTS-0.3-1B",
dtype=torch.bfloat16,
device="cuda"
)
interface = outetts.InterfaceHF(model_version="0.3", cfg=model_config)
if reference_audio:
speaker = interface.create_speaker(reference_audio)
elif speaker_selection and speaker_selection != "None":
speaker = interface.load_default_speaker(speaker_selection)
else:
speaker = None
gen_cfg = outetts.GenerationConfig(
text=text,
temperature=temperature,
repetition_penalty=repetition_penalty,
max_length=4096,
speaker=speaker,
)
output = interface.generate(config=gen_cfg)
if output.audio is None:
raise ValueError("Model failed to generate audio. This may be due to input length constraints or early EOS token.")
output_path = "output.wav"
output.save(output_path)
# Cleanup after generation
cleanup_cuda()
del interface
del model_config
del output
return output_path, None
except Exception as e:
cleanup_cuda()
return None, str(e)
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as demo:
gr.Markdown("# Voice Clone Multilingual TTS")
error_box = gr.Textbox(label="Error Messages", visible=False)
with gr.Row():
with gr.Column(scale=1):
text_input = gr.Textbox(
label="Text to Synthesize",
placeholder="Enter text here...",
lines=8
)
submit_button = gr.Button("Generate Speech")
with gr.Column(scale=1):
audio_output = gr.Audio(
label="Generated Audio",
type="filepath"
)
with gr.Group():
speaker_dropdown = gr.Dropdown(
choices=get_available_speakers(),
value="en_male_1",
label="Speaker Selection"
)
temperature = gr.Slider(
0.1, 1.0,
value=0.1,
label="Temperature (lower = more stable tone, higher = more expressive)"
)
repetition_penalty = gr.Slider(
0.5, 2.0,
value=1.1,
label="Repetition Penalty"
)
reference_audio = gr.Audio(
label="Reference Audio (for voice cloning)",
type="filepath"
)
gr.Markdown("""
### Voice Cloning Guidelines:
- Use around 7-10 seconds of clear, noise-free audio
- For transcription interface will use Whisper turbo to transcribe the audio file
- Longer audio clips will reduce maximum output length
- Custom speaker overrides speaker selection
""")
submit_button.click(
fn=generate_tts,
inputs=[
text_input,
temperature,
repetition_penalty,
speaker_dropdown,
reference_audio,
],
outputs=[audio_output, error_box]
).then(
fn=lambda x: gr.update(visible=bool(x)),
inputs=[error_box],
outputs=[error_box]
)
if __name__ == "__main__":
demo.launch() |