Spaces:
Sleeping
Sleeping
File size: 37,573 Bytes
9ba9778 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 |
import torch, os, traceback, sys, warnings, shutil, numpy as np
import gradio as gr
import librosa
import asyncio
import rarfile
import edge_tts
import yt_dlp
import ffmpeg
import gdown
import subprocess
import wave
import soundfile as sf
from scipy.io import wavfile
from datetime import datetime
from urllib.parse import urlparse
from mega import Mega
now_dir = os.getcwd()
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from fairseq import checkpoint_utils
from vc_infer_pipeline import VC
from config import Config
config = Config()
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
hubert_model = None
f0method_mode = ["pm", "harvest", "crepe"]
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
if os.path.isfile("rmvpe.pt"):
f0method_mode.insert(2, "rmvpe")
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
load_hubert()
weight_root = "weights"
index_root = "weights/index"
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
for file in model_files:
if file.endswith(".pth"):
weights_model.append(file)
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
def check_models():
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
for file in model_files:
if file.endswith(".pth"):
weights_model.append(file)
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
return (
gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
gr.Dropdown.update(choices=sorted(weights_index))
)
def clean():
return (
gr.Dropdown.update(value=""),
gr.Slider.update(visible=False)
)
def vc_single(
sid,
vc_audio_mode,
input_audio_path,
input_upload_audio,
vocal_audio,
tts_text,
tts_voice,
f0_up_key,
f0_file,
f0_method,
file_index,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
global tgt_sr, net_g, vc, hubert_model, version, cpt
try:
logs = []
print(f"Converting...")
logs.append(f"Converting...")
yield "\n".join(logs), None
if vc_audio_mode == "Input path" or "Youtube" and input_audio_path != "":
audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
elif vc_audio_mode == "Upload audio":
selected_audio = input_upload_audio
if vocal_audio:
selected_audio = vocal_audio
elif input_upload_audio:
selected_audio = input_upload_audio
sampling_rate, audio = selected_audio
duration = audio.shape[0] / sampling_rate
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
elif vc_audio_mode == "TTS Audio":
if tts_text is None or tts_voice is None:
return "You need to enter text and select a voice", None
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
input_audio_path = "tts.mp3"
f0_up_key = int(f0_up_key)
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
if_f0 = cpt.get("f0", 1)
audio_opt = vc.pipeline(
hubert_model,
net_g,
sid,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=f0_file
)
if resample_sr >= 16000 and tgt_sr != resample_sr:
tgt_sr = resample_sr
index_info = (
"Using index:%s." % file_index
if os.path.exists(file_index)
else "Index not used."
)
print("Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
index_info,
times[0],
times[1],
times[2],
))
info = f"{index_info}\n[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
logs.append(info)
yield "\n".join(logs), (tgt_sr, audio_opt)
except:
info = traceback.format_exc()
print(info)
logs.append(info)
yield "\n".join(logs), None
def get_vc(sid, to_return_protect0):
global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
if sid == "" or sid == []:
global hubert_model
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
print("clean_empty_cache")
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
###楼下不这么折腾清理不干净
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g, cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
cpt = None
return (
gr.Slider.update(maximum=2333, visible=False),
gr.Slider.update(visible=True),
gr.Dropdown.update(choices=sorted(weights_index), value=""),
gr.Markdown.update(value="# <center> No model selected")
)
print(f"Loading {sid} model...")
selected_model = sid[:-4]
cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
if_f0 = cpt.get("f0", 1)
if if_f0 == 0:
to_return_protect0 = {
"visible": False,
"value": 0.5,
"__type__": "update",
}
else:
to_return_protect0 = {
"visible": True,
"value": to_return_protect0,
"__type__": "update",
}
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk = cpt["config"][-3]
weights_index = []
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
if weights_index == []:
selected_index = gr.Dropdown.update(value="")
else
selected_index = gr.Dropdown.update(value=weights_index[0])
for index, model_index in enumerate(weights_index):
if selected_model in model_index:
selected_index = gr.Dropdown.update(value=weights_index[index])
break
return (
gr.Slider.update(maximum=n_spk, visible=True),
to_return_protect0,
selected_index,
gr.Markdown.update(
f'## <center> {selected_model}\n'+
f'### <center> RVC {version} Model'
)
)
def find_audio_files(folder_path, extensions):
audio_files = []
for root, dirs, files in os.walk(folder_path):
for file in files:
if any(file.endswith(ext) for ext in extensions):
audio_files.append(file)
return audio_files
def vc_multi(
spk_item,
vc_input,
vc_output,
vc_transform0,
f0method0,
file_index,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
):
global tgt_sr, net_g, vc, hubert_model, version, cpt
logs = []
logs.append("Converting...")
yield "\n".join(logs)
print()
try:
if os.path.exists(vc_input):
folder_path = vc_input
extensions = [".mp3", ".wav", ".flac", ".ogg"]
audio_files = find_audio_files(folder_path, extensions)
for index, file in enumerate(audio_files, start=1):
audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True)
input_audio_path = folder_path, file
f0_up_key = int(vc_transform0)
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
if_f0 = cpt.get("f0", 1)
audio_opt = vc.pipeline(
hubert_model,
net_g,
spk_item,
audio,
input_audio_path,
times,
f0_up_key,
f0method0,
file_index,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=None
)
if resample_sr >= 16000 and tgt_sr != resample_sr:
tgt_sr = resample_sr
output_path = f"{os.path.join(vc_output, file)}"
os.makedirs(os.path.join(vc_output), exist_ok=True)
sf.write(
output_path,
audio_opt,
tgt_sr,
)
info = f"{index} / {len(audio_files)} | {file}"
print(info)
logs.append(info)
yield "\n".join(logs)
else:
logs.append("Folder not found or path doesn't exist.")
yield "\n".join(logs)
except:
info = traceback.format_exc()
print(info)
logs.append(info)
yield "\n".join(logs)
def download_audio(url, audio_provider):
logs = []
os.makedirs("dl_audio", exist_ok=True)
if url == "":
logs.append("URL required!")
yield None, "\n".join(logs)
return None, "\n".join(logs)
if audio_provider == "Youtube":
logs.append("Downloading the audio...")
yield None, "\n".join(logs)
ydl_opts = {
'noplaylist': True,
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
"outtmpl": 'result/dl_audio/audio',
}
audio_path = "result/dl_audio/audio.wav"
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
logs.append("Download Complete.")
yield audio_path, "\n".join(logs)
def cut_vocal_and_inst_yt(split_model):
logs = []
logs.append("Starting the audio splitting process...")
yield "\n".join(logs), None, None, None
command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output"
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
for line in result.stdout:
logs.append(line)
yield "\n".join(logs), None, None, None
print(result.stdout)
vocal = f"output/{split_model}/audio/vocals.wav"
inst = f"output/{split_model}/audio/no_vocals.wav"
logs.append("Audio splitting complete.")
yield "\n".join(logs), vocal, inst, vocal
def cut_vocal_and_inst(split_model, audio_data):
logs = []
vocal_path = "output/result/audio.wav"
os.makedirs("output/result", exist_ok=True)
wavfile.write(vocal_path, audio_data[0], audio_data[1])
logs.append("Starting the audio splitting process...")
yield "\n".join(logs), None, None
command = f"demucs --two-stems=vocals -n {split_model} {vocal_path} -o output"
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
for line in result.stdout:
logs.append(line)
yield "\n".join(logs), None, None
print(result.stdout)
vocal = f"output/{split_model}/audio/vocals.wav"
inst = f"output/{split_model}/audio/no_vocals.wav"
logs.append("Audio splitting complete.")
yield "\n".join(logs), vocal, inst
def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume, split_model):
os.makedirs("output/result", exist_ok=True)
vocal_path = "output/result/output.wav"
output_path = "output/result/combine.mp3"
inst_path = f"output/{split_model}/audio/no_vocals.wav"
wavfile.write(vocal_path, audio_data[0], audio_data[1])
command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
print(result.stdout.decode())
return output_path
def download_and_extract_models(urls):
logs = []
os.makedirs("zips", exist_ok=True)
os.makedirs(os.path.join("zips", "extract"), exist_ok=True)
os.makedirs(os.path.join(weight_root), exist_ok=True)
os.makedirs(os.path.join(index_root), exist_ok=True)
for link in urls.splitlines():
url = link.strip()
if not url:
raise gr.Error("URL Required!")
return "No URLs provided."
model_zip = urlparse(url).path.split('/')[-2] + '.zip'
model_zip_path = os.path.join('zips', model_zip)
logs.append(f"Downloading...")
yield "\n".join(logs)
if "drive.google.com" in url:
gdown.download(url, os.path.join("zips", "extract"), quiet=False)
elif "mega.nz" in url:
m = Mega()
m.download_url(url, 'zips')
else:
os.system(f"wget {url} -O {model_zip_path}")
logs.append(f"Extracting...")
yield "\n".join(logs)
for filename in os.listdir("zips"):
archived_file = os.path.join("zips", filename)
if filename.endswith(".zip"):
shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip')
elif filename.endswith(".rar"):
with rarfile.RarFile(archived_file, 'r') as rar:
rar.extractall(os.path.join("zips", "extract"))
for _, dirs, files in os.walk(os.path.join("zips", "extract")):
logs.append(f"Searching Model and Index...")
yield "\n".join(logs)
model = False
index = False
if files:
for file in files:
if file.endswith(".pth"):
basename = file[:-4]
shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file))
model = True
if file.endswith('.index') and "trained" not in file:
shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file))
index = True
else:
logs.append("No model in main folder.")
yield "\n".join(logs)
logs.append("Searching in subfolders...")
yield "\n".join(logs)
for sub_dir in dirs:
for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)):
for file in sub_files:
if file.endswith(".pth"):
basename = file[:-4]
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file))
model = True
if file.endswith('.index') and "trained" not in file:
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file))
index = True
shutil.rmtree(os.path.join("zips", "extract", sub_dir))
if index is False:
logs.append("Model only file, no Index file detected.")
yield "\n".join(logs)
logs.append("Download Completed!")
yield "\n".join(logs)
logs.append("Successfully download all models! Refresh your model list to load the model")
yield "\n".join(logs)
def use_microphone(microphone):
if microphone == True:
return gr.Audio.update(source="microphone")
else:
return gr.Audio.update(source="upload")
def change_audio_mode(vc_audio_mode):
if vc_audio_mode == "Input path":
return (
# Input & Upload
gr.Textbox.update(visible=True),
gr.Checkbox.update(visible=False),
gr.Audio.update(visible=False),
# Youtube
gr.Dropdown.update(visible=False),
gr.Textbox.update(visible=False),
gr.Textbox.update(visible=False),
gr.Button.update(visible=False),
# Splitter
gr.Dropdown.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Button.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=True),
gr.Audio.update(visible=True),
gr.Slider.update(visible=True),
gr.Slider.update(visible=True),
gr.Audio.update(visible=True),
gr.Button.update(visible=True),
# TTS
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False)
)
elif vc_audio_mode == "Upload audio":
return (
# Input & Upload
gr.Textbox.update(visible=False),
gr.Checkbox.update(visible=True),
gr.Audio.update(visible=True),
# Youtube
gr.Dropdown.update(visible=False),
gr.Textbox.update(visible=False),
gr.Textbox.update(visible=False),
gr.Button.update(visible=False),
# Splitter
gr.Dropdown.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=False),
gr.Button.update(visible=True),
gr.Audio.update(visible=False),
gr.Audio.update(visible=True),
gr.Audio.update(visible=True),
gr.Slider.update(visible=True),
gr.Slider.update(visible=True),
gr.Audio.update(visible=True),
gr.Button.update(visible=True),
# TTS
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False)
)
elif vc_audio_mode == "Youtube":
return (
# Input & Upload
gr.Textbox.update(visible=False),
gr.Checkbox.update(visible=False),
gr.Audio.update(visible=False),
# Youtube
gr.Dropdown.update(visible=True),
gr.Textbox.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
# Splitter
gr.Dropdown.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Button.update(visible=False),
gr.Audio.update(visible=True),
gr.Audio.update(visible=True),
gr.Audio.update(visible=True),
gr.Slider.update(visible=True),
gr.Slider.update(visible=True),
gr.Audio.update(visible=True),
gr.Button.update(visible=True),
# TTS
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False)
)
elif vc_audio_mode == "TTS Audio":
return (
# Input & Upload
gr.Textbox.update(visible=False),
gr.Checkbox.update(visible=False),
gr.Audio.update(visible=False),
# Youtube
gr.Dropdown.update(visible=False),
gr.Textbox.update(visible=False),
gr.Textbox.update(visible=False),
gr.Button.update(visible=False),
# Splitter
gr.Dropdown.update(visible=False),
gr.Textbox.update(visible=False),
gr.Button.update(visible=False),
gr.Button.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
gr.Slider.update(visible=False),
gr.Slider.update(visible=False),
gr.Audio.update(visible=False),
gr.Button.update(visible=False),
# TTS
gr.Textbox.update(visible=True),
gr.Dropdown.update(visible=True)
)
with gr.Blocks() as app:
gr.Markdown(
"# <center> Advanced RVC Inference\n"
)
with gr.Row():
sid = gr.Dropdown(
label="Weight",
choices=sorted(weights_model),
)
file_index = gr.Dropdown(
label="List of index file",
choices=sorted(weights_index),
interactive=True,
)
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label="Speaker ID",
value=0,
visible=False,
interactive=True,
)
refresh_model = gr.Button("Refresh model list", variant="primary")
clean_button = gr.Button("Clear Model from memory", variant="primary")
refresh_model.click(
fn=check_models, inputs=[], outputs=[sid, file_index]
)
clean_button.click(fn=clean, inputs=[], outputs=[sid, spk_item])
with gr.TabItem("Inference"):
selected_model = gr.Markdown(value="# <center> No model selected")
with gr.Row():
with gr.Column():
vc_audio_mode = gr.Dropdown(label="Input voice", choices=["Input path", "Upload audio", "Youtube", "TTS Audio"], allow_custom_value=False, value="Upload audio")
# Input
vc_input = gr.Textbox(label="Input audio path", visible=False)
# Upload
vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
# Youtube
vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
vc_log_yt = gr.Textbox(label="Output Information", visible=False, interactive=False)
vc_download_button = gr.Button("Download Audio", variant="primary", visible=False)
vc_audio_preview = gr.Audio(label="Downloaded Audio Preview", visible=False)
# TTS
tts_text = gr.Textbox(label="TTS text", info="Text to speech input", visible=False)
tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
# Splitter
vc_split_model = gr.Dropdown(label="Splitter Model", choices=["hdemucs_mmi", "htdemucs", "htdemucs_ft", "mdx", "mdx_q", "mdx_extra_q"], allow_custom_value=False, visible=True, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
vc_split_log = gr.Textbox(label="Output Information", visible=True, interactive=False)
vc_split_yt = gr.Button("Split Audio", variant="primary", visible=False)
vc_split = gr.Button("Split Audio", variant="primary", visible=True)
vc_vocal_preview = gr.Audio(label="Vocal Preview", interactive=False, visible=True)
vc_inst_preview = gr.Audio(label="Instrumental Preview", interactive=False, visible=True)
with gr.Column():
vc_transform0 = gr.Number(
label="Transpose",
info='Type "12" to change from male to female convertion or Type "-12" to change female to male convertion.',
value=0
)
f0method0 = gr.Radio(
label="Pitch extraction algorithm",
info=f0method_info,
choices=f0method_mode,
value="pm",
interactive=True,
)
index_rate0 = gr.Slider(
minimum=0,
maximum=1,
label="Retrieval feature ratio",
value=0.7,
interactive=True,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label="Apply Median Filtering",
info="The value represents the filter radius and can reduce breathiness.",
value=3,
step=1,
interactive=True,
)
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label="Resample the output audio",
info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
value=0,
step=1,
interactive=True,
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label="Volume Envelope",
info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
value=1,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label="Voice Protection",
info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
value=0.5,
step=0.01,
interactive=True,
)
f0_file0 = gr.File(
label="F0 curve file (Optional)",
info="One pitch per line, Replace the default F0 and pitch modulation"
)
with gr.Column():
vc_log = gr.Textbox(label="Output Information", interactive=False)
vc_output = gr.Audio(label="Output Audio", interactive=False)
vc_convert = gr.Button("Convert", variant="primary")
vc_vocal_volume = gr.Slider(
minimum=0,
maximum=10,
label="Vocal volume",
value=1,
interactive=True,
step=1,
info="Adjust vocal volume (Default: 1}",
visible=True
)
vc_inst_volume = gr.Slider(
minimum=0,
maximum=10,
label="Instrument volume",
value=1,
interactive=True,
step=1,
info="Adjust instrument volume (Default: 1}",
visible=True
)
vc_combined_output = gr.Audio(label="Output Combined Audio", visible=True)
vc_combine = gr.Button("Combine",variant="primary", visible=True)
vc_convert.click(
vc_single,
[
spk_item,
vc_audio_mode,
vc_input,
vc_upload,
vc_vocal_preview,
tts_text,
tts_voice,
vc_transform0,
f0_file0,
f0method0,
file_index,
index_rate0,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
],
[vc_log, vc_output],
)
vc_download_button.click(
fn=download_audio,
inputs=[vc_link, vc_download_audio],
outputs=[vc_audio_preview, vc_log_yt]
)
vc_split_yt.click(
fn=cut_vocal_and_inst_yt,
inputs=[vc_split_model],
outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview, vc_input]
)
vc_split.click(
fn=cut_vocal_and_inst,
inputs=[vc_split_model, vc_upload],
outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview]
)
vc_combine.click(
fn=combine_vocal_and_inst,
inputs=[vc_output, vc_vocal_volume, vc_inst_volume, vc_split_model],
outputs=[vc_combined_output]
)
vc_microphone_mode.change(
fn=use_microphone,
inputs=vc_microphone_mode,
outputs=vc_upload
)
vc_audio_mode.change(
fn=change_audio_mode,
inputs=[vc_audio_mode],
outputs=[
# Input & Upload
vc_input,
vc_microphone_mode,
vc_upload,
# Youtube
vc_download_audio,
vc_link,
vc_log_yt,
vc_download_button,
# Splitter
vc_split_model,
vc_split_log,
vc_split_yt,
vc_split,
vc_audio_preview,
vc_vocal_preview,
vc_inst_preview,
vc_vocal_volume,
vc_inst_volume,
vc_combined_output,
vc_combine,
# TTS
tts_text,
tts_voice
]
)
sid.change(fn=get_vc, inputs=[sid, protect0], outputs=[spk_item, protect0, file_index, selected_model])
with gr.TabItem("Batch Inference"):
with gr.Row():
with gr.Column():
vc_input_bat = gr.Textbox(label="Input audio path (folder)", visible=True)
vc_output_bat = gr.Textbox(label="Output audio path (folder)", value="result/batch", visible=True)
with gr.Column():
vc_transform0_bat = gr.Number(
label="Transpose",
info='Type "12" to change from male to female convertion or Type "-12" to change female to male convertion.',
value=0
)
f0method0_bat = gr.Radio(
label="Pitch extraction algorithm",
info=f0method_info,
choices=f0method_mode,
value="pm",
interactive=True,
)
index_rate0_bat = gr.Slider(
minimum=0,
maximum=1,
label="Retrieval feature ratio",
value=0.7,
interactive=True,
)
filter_radius0_bat = gr.Slider(
minimum=0,
maximum=7,
label="Apply Median Filtering",
info="The value represents the filter radius and can reduce breathiness.",
value=3,
step=1,
interactive=True,
)
resample_sr0_bat = gr.Slider(
minimum=0,
maximum=48000,
label="Resample the output audio",
info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
value=0,
step=1,
interactive=True,
)
rms_mix_rate0_bat = gr.Slider(
minimum=0,
maximum=1,
label="Volume Envelope",
info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
value=1,
interactive=True,
)
protect0_bat = gr.Slider(
minimum=0,
maximum=0.5,
label="Voice Protection",
info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
value=0.5,
step=0.01,
interactive=True,
)
with gr.Column():
vc_log_bat = gr.Textbox(label="Output Information", interactive=False)
vc_convert_bat = gr.Button("Convert", variant="primary")
vc_convert_bat.click(
vc_multi,
[
spk_item,
vc_input_bat,
vc_output_bat,
vc_transform0_bat,
f0method0_bat,
file_index,
index_rate0_bat,
filter_radius0_bat,
resample_sr0_bat,
rms_mix_rate0_bat,
protect0_bat,
],
[vc_log_bat],
)
with gr.TabItem("Model Downloader"):
gr.Markdown(
"# <center> Model Downloader (Beta)\n"+
"#### <center> To download multi link you have to put your link to the textbox and every link separated by space\n"+
"#### <center> Support Direct Link, Mega, Google Drive, etc"
)
with gr.Column():
md_text = gr.Textbox(label="URL")
with gr.Row():
md_download = gr.Button(label="Convert", variant="primary")
md_download_logs = gr.Textbox(label="Output information", interactive=False)
md_download.click(
fn=download_and_extract_models,
inputs=[md_text],
outputs=[md_download_logs]
)
with gr.TabItem("Settings"):
gr.Markdown(
"# <center> Settings\n"+
"#### <center> Work in progress"
)
app.queue(concurrency_count=1, max_size=50, api_open=config.api).launch(share=config.colab) |