Spaces:
Sleeping
Sleeping
File size: 4,255 Bytes
7117f9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# Application file for Gradio App for OpenAI Model
import gradio as gr
import time
import datetime
import os
from lc_base.chain import openai_chain
from lc_base.dnd_database import create_dnd_database
############################# Global Params #############################
time_diff = 0
# model_name="gpt-3.5-turbo-1106" # FOR TESTING
# model_name = "gpt-4-1106-preview"
model_name = "gpt-4o-mini-2024-07-18"
search_type = "stuff"
input_question = ""
model_response = ""
user_feedback = ""
dir = ""
title = """<h1 align="center">ResearchBuddy</h1>"""
description = """<br><br><h3 align="center">This is a GPT based Research Buddy to assist in navigating new research topics.</h3>"""
DEFAULT_STATUS = "⬆Upload PDF files"
############################# Drag and Drop PDF processing #############################
def check_pdfs(pdf_files):
global db
db = create_dnd_database(pdf_files)
if not db:
return "Please upload PDF files again or submit a drive link containing only PDFs."
else:
return "Processing Completed - You can start the chat now!"
############################# Chatbot Specific functions #############################
def user(user_message, history):
return "", history + [[user_message, None]]
def respond(message, chat_history):
global time_diff, model_response, input_question
question = str(message)
chain = openai_chain(inp_dir=dir)
query = question
start_time = time.time()
output = chain.get_response_from_drive(query=query, database=db, k=10, model_name=model_name, type=search_type)
# Update global variables for logging
time_diff = time.time() - start_time
model_response = output
input_question = question
bot_message = output
chat_history.append((message, bot_message))
time.sleep(1) # Pause for a second to avoid overloading
return " ", chat_history
############################# Gradio Application Block #############################
with gr.Blocks(theme=gr.themes.Soft(primary_hue="emerald", neutral_hue="slate")) as chat:
gr.HTML(title)
global db
# PDF Drag and Drop + Drive link Input + Status containers
with gr.Row(equal_height=True):
with gr.Column():
with gr.Row():
pdf_files_dnd = gr.File(file_count='multiple', height=250, label="Upload PDF Files")
with gr.Row():
status_message = gr.Text(label="Status", value=DEFAULT_STATUS, text_align='center')
pdf_files_dnd.change(
fn=check_pdfs,
inputs=[pdf_files_dnd],
outputs=[status_message],
preprocess=False,
postprocess=False) # Set preprocess and postprocess to False, to avoid the tmpfile object creation, instead get a Dict
# Chatbot container
chatbot = gr.Chatbot(height=750)
msg = gr.Textbox(label="Send a message", placeholder="Send a message",
show_label=False, container=False)
with gr.Row():
with gr.Column():
clear_history_button = gr.ClearButton(value="Clear Chat History")
with gr.Column():
new_chat_button = gr.ClearButton(value="New Chat")
# Sample questions
with gr.Row():
with gr.Column():
gr.Examples([
["Explain these documents to me in simpler terms."],
["What does these documents talk about?"],
["Give the key topics covered in these documents in less than 10 words."],
["What are the key findings in these documents?"],
], inputs=msg, label= "Click on any example to copy in the chatbox"
)
# Get a response when a message is submitted to the chatbot
msg.submit(
fn = respond,
inputs = [msg, chatbot],
outputs = [msg, chatbot],
queue = True)
# Clear the chat history/ New chat
clear_history_button.click(lambda: [None, None], outputs=[msg, chatbot])
new_chat_button.click(
lambda: [None, None, None, None, DEFAULT_STATUS],
outputs=[msg, chatbot, pdf_files_dnd, status_message])
# Description at the bottom of the application
gr.HTML(description)
# Enable queing
chat.queue()
chat.launch() |