File size: 9,171 Bytes
9447174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import io
import os
import shutil
import zipfile

import gradio as gr
import requests
from huggingface_hub import create_repo, upload_folder, whoami

from convert import convert_full_checkpoint

MODELS_DIR = "models/"
CKPT_FILE = MODELS_DIR + "model.ckpt"
HF_MODEL_DIR = MODELS_DIR + "diffusers_model"
ZIP_FILE = MODELS_DIR + "model.zip"


def download_ckpt(url, out_path):
    with open(out_path, "wb") as out_file:
        with requests.get(url, stream=True) as r:
            r.raise_for_status()
            for chunk in r.iter_content(chunk_size=8192):
                out_file.write(chunk)


def zip_model(model_path, zip_path):
    with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_STORED) as zip_file:
        for root, dirs, files in os.walk(model_path):
            for file in files:
                zip_file.write(
                    os.path.join(root, file),
                    os.path.relpath(
                        os.path.join(root, file), os.path.join(model_path, "..")
                    ),
                )


def download_checkpoint_and_config(ckpt_url, config_url):
    ckpt_url = ckpt_url.strip()
    config_url = config_url.strip()

    if not ckpt_url.startswith("http://") and not ckpt_url.startswith("https://"):
        raise ValueError("Invalid checkpoint URL")

    if config_url.startswith("http://") or config_url.startswith("https://"):
        response = requests.get(config_url)
        response.raise_for_status()
        config_file = io.BytesIO(response.content)
    elif config_url != "":
        raise ValueError("Invalid config URL")
    else:
        config_file = open("original_config.yaml", "r")

    download_ckpt(ckpt_url, CKPT_FILE)

    return CKPT_FILE, config_file


def convert_and_download(ckpt_url, config_url, scheduler_type, extract_ema):
    shutil.rmtree(MODELS_DIR, ignore_errors=True)
    os.makedirs(HF_MODEL_DIR)

    ckpt_path, config_file = download_checkpoint_and_config(ckpt_url, config_url)

    convert_full_checkpoint(
        ckpt_path,
        config_file,
        scheduler_type=scheduler_type,
        extract_ema=(extract_ema == "EMA"),
        output_path=HF_MODEL_DIR,
    )
    zip_model(HF_MODEL_DIR, ZIP_FILE)

    return ZIP_FILE


def convert_and_upload(
    ckpt_url, config_url, scheduler_type, extract_ema, token, model_name
):
    shutil.rmtree(MODELS_DIR, ignore_errors=True)
    os.makedirs(HF_MODEL_DIR)

    try:
        ckpt_path, config_file = download_checkpoint_and_config(ckpt_url, config_url)

        username = whoami(token)["name"]
        repo_name = f"{username}/{model_name}"
        repo_url = create_repo(repo_name, token=token, exist_ok=True)
        convert_full_checkpoint(
            ckpt_path,
            config_file,
            scheduler_type=scheduler_type,
            extract_ema=(extract_ema == "EMA"),
            output_path=HF_MODEL_DIR,
        )
        upload_folder(repo_id=repo_name, folder_path=HF_MODEL_DIR, token=token, commit_message=f"Upload diffusers weights")
    except Exception as e:
        return f"#### Error: {e}"
    return f"#### Success! Model uploaded to [{repo_url}]({repo_url})"


TTILE_IMAGE = """
<div
    style="
        display: block;
        margin-left: auto;
        margin-right: auto;
        width: 50%;
    "
>
<img src="https://github.com/huggingface/diffusers/raw/main/docs/source/imgs/diffusers_library.jpg"/>
</div>
"""

TITLE = """
<div
    style="
        display: inline-flex;
        align-items: center;
        text-align: center;
        max-width: 1400px;
        gap: 0.8rem;
        font-size: 2.2rem;
    "
>
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px;">
    Convert Stable Diffusion `.ckpt` files to Hugging Face Diffusers 🔥
</h1>
</div>
"""

with gr.Blocks() as interface:
    gr.HTML(TTILE_IMAGE)
    gr.HTML(TITLE)
    gr.Markdown("We will perform all of the checkpoint surgery for you, and create a clean diffusers model!")
    gr.Markdown("This converter will also remove any pickled code from third-party checkpoints.")

    with gr.Row():
        with gr.Column(scale=50):
            gr.Markdown("### 1. Paste a URL to your <model>.ckpt file")
            ckpt_url = gr.Textbox(
                max_lines=1,
                label="URL to <model>.ckpt",
                placeholder="https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned.ckpt",
            )

        with gr.Column(scale=50):
            gr.Markdown("### (Optional) paste a URL to your <config>.yaml file")
            config_url = gr.Textbox(
                max_lines=1,
                label="URL to <config>.yaml",
                placeholder="https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-inference.yaml",
            )
            gr.Markdown(
                "**If you don't provide a config file, we'll try to use"
                " [v1-inference.yaml](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-inference.yaml).*"
            )
    with gr.Accordion("Advanced Settings"):
            scheduler_type = gr.Dropdown(
                label="Choose a scheduler type (if not sure, keep the PNDM default)",
                choices=["PNDM", "K-LMS", "Euler", "EulerAncestral", "DDIM"],
                value="PNDM",
            )
            extract_ema = gr.Radio(
                label=(
                    "EMA weights usually yield higher quality images for inference."
                    " Non-EMA weights are usually better to continue fine-tuning."
                ),
                choices=["EMA", "Non-EMA"],
                value="EMA",
                interactive=True,
            )

    gr.Markdown("### 2. Choose what to do with the converted model")
    model_choice = gr.Radio(
        show_label=False,
        choices=[
            "Download the model as an archive",
            "Host the model on the Hugging Face Hub",
            # "Submit a PR with the model for an existing Hub repository",
        ],
        type="index",
        value="Download the model as an archive",
        interactive=True,
    )

    download_panel = gr.Column(visible=True)
    upload_panel = gr.Column(visible=False)
    # pr_panel = gr.Column(visible=False)

    model_choice.change(
        fn=lambda i: gr.update(visible=(i == 0)),
        inputs=model_choice,
        outputs=download_panel,
    )
    model_choice.change(
        fn=lambda i: gr.update(visible=(i == 1)),
        inputs=model_choice,
        outputs=upload_panel,
    )
    # model_choice.change(
    #     fn=lambda i: gr.update(visible=(i == 2)),
    #     inputs=model_choice,
    #     outputs=pr_panel,
    # )

    with download_panel:
        gr.Markdown("### 3. Convert and download")

        down_btn = gr.Button("Convert")
        output_file = gr.File(
            label="Download the converted model",
            type="binary",
            interactive=False,
            visible=True,
        )

        down_btn.click(
            fn=convert_and_download,
            inputs=[ckpt_url, config_url, scheduler_type, extract_ema],
            outputs=output_file,
        )

    with upload_panel:
        gr.Markdown("### 3. Convert and host on the Hub")
        gr.Markdown(
            "This will create a new repository if it doesn't exist yet, and upload the model to the Hugging Face Hub.\n\n"
            "Paste a WRITE token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)"
            " and make up a model name."
        )
        up_token = gr.Textbox(
            max_lines=1,
            label="Hugging Face token",
        )
        up_model_name = gr.Textbox(
            max_lines=1,
            label="Hub model name (e.g. `artistic-diffusion-v1`)",
            placeholder="my-awesome-model",
        )

        upload_btn = gr.Button("Convert and upload")
        with gr.Box():
            output_text = gr.Markdown()
        upload_btn.click(
            fn=convert_and_upload,
            inputs=[
                ckpt_url,
                config_url,
                scheduler_type,
                extract_ema,
                up_token,
                up_model_name,
            ],
            outputs=output_text,
        )

    # with pr_panel:
    #     gr.Markdown("### 3. Convert and submit as a PR")
    #     gr.Markdown(
    #         "This will open a Pull Request on the original model repository, if it already exists on the Hub.\n\n"
    #         "Paste a write-access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens)"
    #         " and paste an existing model id from the Hub in the `username/model-name` form."
    #     )
    #     pr_token = gr.Textbox(
    #         max_lines=1,
    #         label="Hugging Face token",
    #     )
    #     pr_model_name = gr.Textbox(
    #         max_lines=1,
    #         label="Hub model name (e.g. `diffuser/artistic-diffusion-v1`)",
    #         placeholder="diffuser/my-awesome-model",
    #     )
    #
    #     btn = gr.Button("Convert and open a PR")
    #     output = gr.Markdown(label="Output")


interface.queue(concurrency_count=1)
interface.launch()