Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,894 Bytes
1de8821 661d490 1de8821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import os
import cv2
from typing import overload, Generator, Dict
from argparse import Namespace
import numpy as np
import torch
import imageio
from PIL import Image
from omegaconf import OmegaConf
from accelerate.utils import set_seed
from model.cldm import ControlLDM
from model.gaussian_diffusion import Diffusion
from model.bsrnet import RRDBNet
from model.scunet import SCUNet
from model.swinir import SwinIR
from utils.common import instantiate_from_config, load_file_from_url, count_vram_usage
from utils.face_restoration_helper import FaceRestoreHelper
from utils.helpers import (
Pipeline,
BSRNetPipeline, SwinIRPipeline, SCUNetPipeline,
batch_bicubic_resize,
bicubic_resize,
save_video
)
from utils.cond_fn import MSEGuidance, WeightedMSEGuidance
from GMFlow.gmflow.gmflow import GMFlow
from controller.controller import AttentionControl
MODELS = {
### stage_1 model weights
"bsrnet": "https://github.com/cszn/KAIR/releases/download/v1.0/BSRNet.pth",
# the following checkpoint is up-to-date, but we use the old version in our paper
# "swinir_face": "https://github.com/zsyOAOA/DifFace/releases/download/V1.0/General_Face_ffhq512.pth",
"swinir_face": "https://huggingface.co/lxq007/DiffBIR/resolve/main/face_swinir_v1.ckpt",
"scunet_psnr": "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth",
"swinir_general": "https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt",
### stage_2 model weights
"sd_v21": "https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt",
"v1_face": "https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v1_face.pth",
"v1_general": "https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v1_general.pth",
"v2": "https://huggingface.co/lxq007/DiffBIR-v2/resolve/main/v2.pth"
}
def load_model_from_url(url: str) -> Dict[str, torch.Tensor]:
sd_path = load_file_from_url(url, model_dir="weights")
sd = torch.load(sd_path, map_location="cpu")
if "state_dict" in sd:
sd = sd["state_dict"]
if list(sd.keys())[0].startswith("module"):
sd = {k[len("module."):]: v for k, v in sd.items()}
return sd
class InferenceLoop:
def __init__(self, args: Namespace) -> "InferenceLoop":
self.args = args
self.loop_ctx = {}
self.pipeline: Pipeline = None
self.init_stage1_model()
self.init_stage2_model()
self.init_cond_fn()
self.init_pipeline()
@overload
def init_stage1_model(self) -> None:
...
@count_vram_usage
def init_stage2_model(self) -> None:
### load uent, vae, clip
# self.cldm: ControlLDM = instantiate_from_config(OmegaConf.load("configs/inference/my_cldm.yaml"))
config = OmegaConf.load(self.args.config)
if self.args.warp_period is not None:
config.params.latent_warp_cfg.warp_period = self.args.warp_period
if self.args.merge_period is not None:
config.params.latent_warp_cfg.merge_period = self.args.merge_period
if self.args.ToMe_period is not None:
config.params.VidToMe_cfg.ToMe_period = self.args.ToMe_period
if self.args.merge_ratio is not None:
config.params.VidToMe_cfg.merge_ratio = self.args.merge_ratio
# import ipdb; ipdb.set_trace()
self.cldm: ControlLDM = instantiate_from_config(config)
sd = load_model_from_url(MODELS["sd_v21"])
unused = self.cldm.load_pretrained_sd(sd)
print(f"strictly load pretrained sd_v2.1, unused weights: {unused}")
### load controlnet
control_sd = load_model_from_url(MODELS["v2"])
self.cldm.load_controlnet_from_ckpt(control_sd)
print(f"strictly load controlnet weight")
self.cldm.eval().to(self.args.device)
### load diffusion
self.diffusion: Diffusion = instantiate_from_config(OmegaConf.load("configs/inference/diffusion.yaml"))
self.diffusion.to(self.args.device)
def init_cond_fn(self) -> None:
if not self.args.guidance:
self.cond_fn = None
return
if self.args.g_loss == "mse":
cond_fn_cls = MSEGuidance
elif self.args.g_loss == "w_mse":
cond_fn_cls = WeightedMSEGuidance
else:
raise ValueError(self.args.g_loss)
self.cond_fn = cond_fn_cls(
scale=self.args.g_scale, t_start=self.args.g_start, t_stop=self.args.g_stop,
space=self.args.g_space, repeat=self.args.g_repeat
)
@overload
def init_pipeline(self) -> None:
...
def setup(self) -> None:
pass
# self.output_dir = self.args.output
# os.makedirs(self.output_dir, exist_ok=True)
def lq_loader(self) -> Generator[np.ndarray, None, None]:
img_exts = [".png", ".jpg", ".jpeg"]
if os.path.isdir(self.args.input):
file_names = sorted([
file_name for file_name in os.listdir(self.args.input) if os.path.splitext(file_name)[-1] in img_exts
])
file_paths = [os.path.join(self.args.input, file_name) for file_name in file_names]
else:
assert os.path.splitext(self.args.input)[-1] in img_exts
file_paths = [self.args.input]
def _loader() -> Generator[np.ndarray, None, None]:
for file_path in file_paths:
### load lq
lq = np.array(Image.open(file_path).convert("RGB"))
print(f"load lq: {file_path}")
### set context for saving results
self.loop_ctx["file_stem"] = os.path.splitext(os.path.basename(file_path))[0]
for i in range(self.args.n_samples):
self.loop_ctx["repeat_idx"] = i
yield lq
return _loader
def batch_lq_loader(self) -> Generator[np.ndarray, None, None]:
img_exts = [".png", ".jpg", ".jpeg"]
if os.path.isdir(self.args.input):
file_names = sorted([
file_name for file_name in os.listdir(self.args.input) if os.path.splitext(file_name)[-1] in img_exts
], key=lambda x: int(x.split('.')[0]))
# file_names=file_names[30:]
# sorted([filename for filename in os.listdir(img_folder) if filename.endswith(('.png', '.jpg'))], key=lambda x: int(x.split('.')[0]))
file_paths = [os.path.join(self.args.input, file_name) for file_name in file_names]
file_paths = file_paths[:self.args.n_frames]
else:
assert os.path.splitext(self.args.input)[-1] in img_exts
file_paths = [self.args.input]
def _loader() -> Generator[np.ndarray, None, None]:
for j in range(0, len(file_paths), self.args.batch_size):
lqs, self.loop_ctx["file_stem"] = [], []
batch = self.args.batch_size if len(file_paths) - (j + self.args.batch_size) > 2 else len(file_paths) - j
if batch != self.args.batch_size:
self.args.batch_size = batch
# sampler.model.controller.distances.clear()
if self.pipeline.cldm.controller is not None and self.pipeline.cldm.controller.distances is not None:
self.pipeline.cldm.controller.distances.clear()
for file_path in file_paths[j:min(len(file_paths), j+batch)]:
### load lq
print(f"[INFO] load lq: {file_path}")
lq = np.array(Image.open(file_path).convert("RGB"))
lqs.append(lq)
### set context for saving results
self.loop_ctx["file_stem"].append(os.path.splitext(os.path.basename(file_path))[0])
# import ipdb; ipdb.set_trace()
self.args.final_size = (int(lqs[0].shape[0] * self.args.upscale), int(lqs[0].shape[1] * self.args.upscale))
for i in range(self.args.n_samples):
self.loop_ctx["repeat_idx"] = i
yield np.array(lqs)
if j + batch == len(file_paths):
break
return _loader
def after_load_lq(self, lq: np.ndarray) -> np.ndarray:
return lq
@torch.no_grad()
def run(self) -> None:
self.setup()
# We don't support batch processing since input images may have different size
loader = self.batch_lq_loader()
''' flow model '''
flow_model = GMFlow(
feature_channels=128,
num_scales=1,
upsample_factor=8,
num_head=1,
attention_type='swin',
ffn_dim_expansion=4,
num_transformer_layers=6,
).to(self.args.device)
checkpoint = torch.load('weights/gmflow_sintel-0c07dcb3.pth',
map_location=lambda storage, loc: storage)
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
flow_model.load_state_dict(weights, strict=False)
flow_model.eval()
''' flow model ended '''
results = []
if self.cldm.latent_control:
self.cldm.controller.set_total_step(self.args.steps)
for i, img in enumerate(loader()):
torch.cuda.empty_cache()
# import ipdb; ipdb.set_trace()
lq = img
lq = self.after_load_lq(lq)
if self.cldm.latent_control:
print(f"[INFO] set seed @ {self.args.seed}")
set_seed(self.args.seed)
samples, stage1s = self.pipeline.run(
lq, self.args.steps, 1.0, self.args.tiled,
self.args.tile_size, self.args.tile_stride,
self.args.pos_prompt, self.args.neg_prompt, self.args.cfg_scale,
self.args.better_start,
index=i, input=self.args.input, final_size=self.args.final_size,
flow_model=flow_model,
)
if self.cldm.controller is not None:
self.cldm.controller.set_pre_keyframe_lq(lq[self.args.batch_size // 2][None])
results.append(samples)
results = np.concatenate(results, axis=0)
video_path = f'DiffIR2VR_fps_10.mp4'
results = [np.array(img).astype(np.uint8) for img in results]
writer = imageio.get_writer(video_path, fps=10, codec='libx264',
macro_block_size=1)
for img in results:
writer.append_data(img)
writer.close()
return video_path
def save(self, sample: np.ndarray) -> None:
file_stem, repeat_idx = self.loop_ctx["file_stem"], self.loop_ctx["repeat_idx"]
file_name = f"{file_stem}_{repeat_idx}.png" if self.args.n_samples > 1 else f"{file_stem}.png"
save_path = os.path.join(self.args.output, file_name)
Image.fromarray(sample).save(save_path)
print(f"save result to {save_path}")
def batch_save(self, samples: np.ndarray, dir: str=None) -> None:
file_stems, repeat_idx = self.loop_ctx["file_stem"], self.loop_ctx["repeat_idx"]
if dir is not None:
out_dir = os.path.join(self.args.output, dir)
else:
out_dir = os.path.join(self.args.output)
os.makedirs(out_dir, exist_ok=True)
for file_stem, sample in zip(file_stems, samples):
file_name = f"{file_stem}_{repeat_idx}.png" if self.args.n_samples > 1 else f"{file_stem}.png"
save_path = os.path.join(out_dir, file_name)
Image.fromarray(sample).save(save_path)
print(f"save result to {save_path}")
class BSRInferenceLoop(InferenceLoop):
@count_vram_usage
def init_stage1_model(self) -> None:
self.bsrnet: RRDBNet = instantiate_from_config(OmegaConf.load("configs/inference/bsrnet.yaml"))
sd = load_model_from_url(MODELS["bsrnet"])
self.bsrnet.load_state_dict(sd, strict=True)
self.bsrnet.eval().to(self.args.device)
def init_pipeline(self) -> None:
self.pipeline = BSRNetPipeline(self.bsrnet, self.cldm, self.diffusion, self.cond_fn, self.args.device, self.args.upscale)
class BFRInferenceLoop(InferenceLoop):
@count_vram_usage
def init_stage1_model(self) -> None:
self.swinir_face: SwinIR = instantiate_from_config(OmegaConf.load("configs/inference/swinir.yaml"))
sd = load_model_from_url(MODELS["swinir_face"])
self.swinir_face.load_state_dict(sd, strict=True)
self.swinir_face.eval().to(self.args.device)
def init_pipeline(self) -> None:
self.pipeline = SwinIRPipeline(self.swinir_face, self.cldm, self.diffusion, self.cond_fn, self.args.device)
def after_load_lq(self, lq: np.ndarray) -> np.ndarray:
# For BFR task, super resolution is achieved by directly upscaling lq
return bicubic_resize(lq, self.args.upscale)
class BIDInferenceLoop(InferenceLoop):
@count_vram_usage
def init_stage1_model(self) -> None:
self.scunet_psnr: SCUNet = instantiate_from_config(OmegaConf.load("configs/inference/scunet.yaml"))
sd = load_model_from_url(MODELS["scunet_psnr"])
self.scunet_psnr.load_state_dict(sd, strict=True)
self.scunet_psnr.eval().to(self.args.device)
def init_pipeline(self) -> None:
self.pipeline = SCUNetPipeline(self.scunet_psnr, self.cldm, self.diffusion, self.cond_fn, self.args.device)
def after_load_lq(self, lq: np.ndarray) -> np.ndarray:
# For BID task, super resolution is achieved by directly upscaling lq
return batch_bicubic_resize(lq, self.args.upscale)
class V1InferenceLoop(InferenceLoop):
@count_vram_usage
def init_stage1_model(self) -> None:
self.swinir: SwinIR = instantiate_from_config(OmegaConf.load("configs/inference/swinir.yaml"))
if self.args.task == "fr":
sd = load_model_from_url(MODELS["swinir_face"])
elif self.args.task == "sr":
sd = load_model_from_url(MODELS["swinir_general"])
else:
raise ValueError(f"DiffBIR v1 doesn't support task: {self.args.task}, please use v2 by passsing '--version v2'")
self.swinir.load_state_dict(sd, strict=True)
self.swinir.eval().to(self.args.device)
def init_pipeline(self) -> None:
self.pipeline = SwinIRPipeline(self.swinir, self.cldm, self.diffusion, self.cond_fn, self.args.device)
def after_load_lq(self, lq: np.ndarray) -> np.ndarray:
# For BFR task, super resolution is achieved by directly upscaling lq
return bicubic_resize(lq, self.args.upscale)
class UnAlignedBFRInferenceLoop(InferenceLoop):
@count_vram_usage
def init_stage1_model(self) -> None:
self.bsrnet: RRDBNet = instantiate_from_config(OmegaConf.load("configs/inference/bsrnet.yaml"))
sd = load_model_from_url(MODELS["bsrnet"])
self.bsrnet.load_state_dict(sd, strict=True)
self.bsrnet.eval().to(self.args.device)
self.swinir_face: SwinIR = instantiate_from_config(OmegaConf.load("configs/inference/swinir.yaml"))
sd = load_model_from_url(MODELS["swinir_face"])
self.swinir_face.load_state_dict(sd, strict=True)
self.swinir_face.eval().to(self.args.device)
def init_pipeline(self) -> None:
self.pipes = {
"bg": BSRNetPipeline(self.bsrnet, self.cldm, self.diffusion, self.cond_fn, self.args.device, self.args.upscale),
"face": SwinIRPipeline(self.swinir_face, self.cldm, self.diffusion, self.cond_fn, self.args.device)
}
self.pipeline = self.pipes["face"]
def setup(self) -> None:
super().setup()
self.cropped_face_dir = os.path.join(self.args.output, "cropped_faces")
os.makedirs(self.cropped_face_dir, exist_ok=True)
self.restored_face_dir = os.path.join(self.args.output, "restored_faces")
os.makedirs(self.restored_face_dir, exist_ok=True)
self.restored_bg_dir = os.path.join(self.args.output, "restored_backgrounds")
os.makedirs(self.restored_bg_dir, exist_ok=True)
def lq_loader(self) -> Generator[np.ndarray, None, None]:
base_loader = super().lq_loader()
self.face_helper = FaceRestoreHelper(
device=self.args.device,
upscale_factor=1,
face_size=512,
use_parse=True,
det_model="retinaface_resnet50"
)
def _loader() -> Generator[np.ndarray, None, None]:
for lq in base_loader():
### set input image
self.face_helper.clean_all()
upscaled_bg = bicubic_resize(lq, self.args.upscale)
self.face_helper.read_image(upscaled_bg)
### get face landmarks for each face
self.face_helper.get_face_landmarks_5(resize=640, eye_dist_threshold=5)
self.face_helper.align_warp_face()
print(f"detect {len(self.face_helper.cropped_faces)} faces")
### restore each face (has been upscaeled)
for i, lq_face in enumerate(self.face_helper.cropped_faces):
self.loop_ctx["is_face"] = True
self.loop_ctx["face_idx"] = i
self.loop_ctx["cropped_face"] = lq_face
yield lq_face
### restore background (hasn't been upscaled)
self.loop_ctx["is_face"] = False
yield lq
return _loader
def after_load_lq(self, lq: np.ndarray) -> np.ndarray:
if self.loop_ctx["is_face"]:
self.pipeline = self.pipes["face"]
else:
self.pipeline = self.pipes["bg"]
return lq
def save(self, sample: np.ndarray) -> None:
file_stem, repeat_idx = self.loop_ctx["file_stem"], self.loop_ctx["repeat_idx"]
if self.loop_ctx["is_face"]:
face_idx = self.loop_ctx["face_idx"]
file_name = f"{file_stem}_{repeat_idx}_face_{face_idx}.png"
Image.fromarray(sample).save(os.path.join(self.restored_face_dir, file_name))
cropped_face = self.loop_ctx["cropped_face"]
Image.fromarray(cropped_face).save(os.path.join(self.cropped_face_dir, file_name))
self.face_helper.add_restored_face(sample)
else:
self.face_helper.get_inverse_affine()
# paste each restored face to the input image
restored_img = self.face_helper.paste_faces_to_input_image(
upsample_img=sample
)
file_name = f"{file_stem}_{repeat_idx}.png"
Image.fromarray(sample).save(os.path.join(self.restored_bg_dir, file_name))
Image.fromarray(restored_img).save(os.path.join(self.output_dir, file_name))
|