File size: 19,426 Bytes
1de8821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from typing import Optional, Tuple, Dict

import copy
import torch
from torch import nn
import numpy as np
from tqdm import tqdm
from einops import rearrange
import torch.nn.functional as F

from model.gaussian_diffusion import extract_into_tensor
from model.cldm import ControlLDM
from utils.cond_fn import Guidance
from utils.common import sliding_windows, gaussian_weights

import vidtome
from controller.controller import AttentionControl

def pad_to_multiples_of(imgs: torch.Tensor, multiple: int) -> torch.Tensor:
    _, _, h, w = imgs.size()
    if h % multiple == 0 and w % multiple == 0:
        return imgs.clone()
    # get_pad = lambda x: (x // multiple + 1) * multiple - x
    get_pad = lambda x: (x // multiple + int(x % multiple != 0)) * multiple - x
    ph, pw = get_pad(h), get_pad(w)
    return F.pad(imgs, pad=(0, pw, 0, ph), mode="constant", value=0)

# https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/respace.py
def space_timesteps(num_timesteps, section_counts):
    """
    Create a list of timesteps to use from an original diffusion process,
    given the number of timesteps we want to take from equally-sized portions
    of the original process.
    For example, if there's 300 timesteps and the section counts are [10,15,20]
    then the first 100 timesteps are strided to be 10 timesteps, the second 100
    are strided to be 15 timesteps, and the final 100 are strided to be 20.
    If the stride is a string starting with "ddim", then the fixed striding
    from the DDIM paper is used, and only one section is allowed.
    :param num_timesteps: the number of diffusion steps in the original
                          process to divide up.
    :param section_counts: either a list of numbers, or a string containing
                           comma-separated numbers, indicating the step count
                           per section. As a special case, use "ddimN" where N
                           is a number of steps to use the striding from the
                           DDIM paper.
    :return: a set of diffusion steps from the original process to use.
    """
    if isinstance(section_counts, str):
        if section_counts.startswith("ddim"):
            desired_count = int(section_counts[len("ddim") :])
            for i in range(1, num_timesteps):
                if len(range(0, num_timesteps, i)) == desired_count:
                    return set(range(0, num_timesteps, i))
            raise ValueError(
                f"cannot create exactly {num_timesteps} steps with an integer stride"
            )
        section_counts = [int(x) for x in section_counts.split(",")]
    size_per = num_timesteps // len(section_counts)
    extra = num_timesteps % len(section_counts)
    start_idx = 0
    all_steps = []
    for i, section_count in enumerate(section_counts):
        size = size_per + (1 if i < extra else 0)
        if size < section_count:
            raise ValueError(
                f"cannot divide section of {size} steps into {section_count}"
            )
        if section_count <= 1:
            frac_stride = 1
        else:
            frac_stride = (size - 1) / (section_count - 1)
        cur_idx = 0.0
        taken_steps = []
        for _ in range(section_count):
            taken_steps.append(start_idx + round(cur_idx))
            cur_idx += frac_stride
        all_steps += taken_steps
        start_idx += size
    return set(all_steps)


class SpacedSampler(nn.Module):
    """
    Implementation for spaced sampling schedule proposed in IDDPM. This class is designed
    for sampling ControlLDM.
    
    https://arxiv.org/pdf/2102.09672.pdf
    """
    
    def __init__(self, betas: np.ndarray) -> "SpacedSampler":
        super().__init__()
        self.num_timesteps = len(betas)
        self.original_betas = betas
        self.original_alphas_cumprod = np.cumprod(1.0 - betas, axis=0)
        self.context = {}

    def register(self, name: str, value: np.ndarray) -> None:
        self.register_buffer(name, torch.tensor(value, dtype=torch.float32))
    
    def make_schedule(self, num_steps: int) -> None:
        # calcualte betas for spaced sampling
        # https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/respace.py
        used_timesteps = space_timesteps(self.num_timesteps, str(num_steps))
        betas = []
        last_alpha_cumprod = 1.0
        for i, alpha_cumprod in enumerate(self.original_alphas_cumprod):
            if i in used_timesteps:
                # marginal distribution is the same as q(x_{S_t}|x_0)
                betas.append(1 - alpha_cumprod / last_alpha_cumprod)
                last_alpha_cumprod = alpha_cumprod
        assert len(betas) == num_steps
        self.timesteps = np.array(sorted(list(used_timesteps)), dtype=np.int32) # e.g. [0, 10, 20, ...]

        betas = np.array(betas, dtype=np.float64)
        alphas = 1.0 - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        # print(f"sampler sqrt_alphas_cumprod: {np.sqrt(alphas_cumprod)[-1]}")
        alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
        sqrt_recip_alphas_cumprod = np.sqrt(1.0 / alphas_cumprod)
        sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / alphas_cumprod - 1)
        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = (
            betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
        )
        # log calculation clipped because the posterior variance is 0 at the
        # beginning of the diffusion chain.
        posterior_log_variance_clipped = np.log(
            np.append(posterior_variance[1], posterior_variance[1:])
        )
        posterior_mean_coef1 = (
            betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)
        )
        posterior_mean_coef2 = (
            (1.0 - alphas_cumprod_prev)
            * np.sqrt(alphas)
            / (1.0 - alphas_cumprod)
        )

        self.register("sqrt_recip_alphas_cumprod", sqrt_recip_alphas_cumprod)
        self.register("sqrt_recipm1_alphas_cumprod", sqrt_recipm1_alphas_cumprod)
        self.register("posterior_variance", posterior_variance)
        self.register("posterior_log_variance_clipped", posterior_log_variance_clipped)
        self.register("posterior_mean_coef1", posterior_mean_coef1)
        self.register("posterior_mean_coef2", posterior_mean_coef2)

    def q_posterior_mean_variance(self, x_start: torch.Tensor, x_t: torch.Tensor, t: torch.Tensor) -> Tuple[torch.Tensor]:
        """
        Implement the posterior distribution q(x_{t-1}|x_t, x_0).
        
        Args:
            x_start (torch.Tensor): The predicted images (NCHW) in timestep `t`.
            x_t (torch.Tensor): The sampled intermediate variables (NCHW) of timestep `t`.
            t (torch.Tensor): Timestep (N) of `x_t`. `t` serves as an index to get 
                parameters for each timestep.
        
        Returns:
            posterior_mean (torch.Tensor): Mean of the posterior distribution.
            posterior_variance (torch.Tensor): Variance of the posterior distribution.
            posterior_log_variance_clipped (torch.Tensor): Log variance of the posterior distribution.
        """
        posterior_mean = (
            extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
            + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract_into_tensor(
            self.posterior_log_variance_clipped, t, x_t.shape
        )
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def _predict_xstart_from_eps(self, x_t: torch.Tensor, t: torch.Tensor, eps: torch.Tensor) -> torch.Tensor:
        return (
            extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
        )
    
    def apply_cond_fn(
        self,
        model: ControlLDM,
        pred_x0: torch.Tensor,
        t: torch.Tensor,
        index: torch.Tensor,
        cond_fn: Guidance
    ) -> torch.Tensor:
        t_now = int(t[0].item()) + 1
        if not (cond_fn.t_stop < t_now and t_now < cond_fn.t_start):
            # stop guidance
            self.context["g_apply"] = False
            return pred_x0
        grad_rescale = 1 / extract_into_tensor(self.posterior_mean_coef1, index, pred_x0.shape)
        # apply guidance for multiple times
        loss_vals = []
        for _ in range(cond_fn.repeat):
            # set target and pred for gradient computation
            target, pred = None, None
            if cond_fn.space == "latent":
                target = model.vae_encode(cond_fn.target)
                pred = pred_x0
            elif cond_fn.space == "rgb":
                # We need to backward gradient to x0 in latent space, so it's required
                # to trace the computation graph while decoding the latent.
                with torch.enable_grad():
                    target = cond_fn.target
                    pred_x0_rg = pred_x0.detach().clone().requires_grad_(True)
                    pred = model.vae_decode(pred_x0_rg)
                    assert pred.requires_grad
            else:
                raise NotImplementedError(cond_fn.space)
            # compute gradient
            delta_pred, loss_val = cond_fn(target, pred, t_now)
            loss_vals.append(loss_val)
            # update pred_x0 w.r.t gradient
            if cond_fn.space == "latent":
                delta_pred_x0 = delta_pred
                pred_x0 = pred_x0 + delta_pred_x0 * grad_rescale
            elif cond_fn.space == "rgb":
                pred.backward(delta_pred)
                delta_pred_x0 = pred_x0_rg.grad
                pred_x0 = pred_x0 + delta_pred_x0 * grad_rescale
            else:
                raise NotImplementedError(cond_fn.space)
        self.context["g_apply"] = True
        self.context["g_loss"] = float(np.mean(loss_vals))
        return pred_x0

    def predict_noise(
        self,
        model: ControlLDM,
        x: torch.Tensor,
        t: torch.Tensor,
        cond: Dict[str, torch.Tensor],
        uncond: Optional[Dict[str, torch.Tensor]],
        cfg_scale: float
    ) -> torch.Tensor:
        if uncond is None or cfg_scale == 1.:
            model_output = model(x, t, cond)
        else:
            # apply classifier-free guidance
            model_cond = model(x, t, cond)
            model_uncond = model(x, t, uncond)
            model_output = model_uncond + cfg_scale * (model_cond - model_uncond)
        return model_output
    
    @torch.no_grad()
    def predict_noise_tiled(
        self,
        model: ControlLDM,
        x: torch.Tensor,
        t: torch.Tensor,
        cond: Dict[str, torch.Tensor],
        uncond: Optional[Dict[str, torch.Tensor]],
        cfg_scale: float,
        tile_size: int,
        tile_stride: int
    ):
        _, _, h, w = x.shape
        tiles = tqdm(sliding_windows(h, w, tile_size // 8, tile_stride // 8), unit="tile", leave=False)
        eps = torch.zeros_like(x)
        count = torch.zeros_like(x, dtype=torch.float32)
        weights = gaussian_weights(tile_size // 8, tile_size // 8)[None, None]
        weights = torch.tensor(weights, dtype=torch.float32, device=x.device)
        for hi, hi_end, wi, wi_end in tiles:
            tiles.set_description(f"Process tile ({hi} {hi_end}), ({wi} {wi_end})")
            tile_x = x[:, :, hi:hi_end, wi:wi_end]
            tile_cond = {
                "c_img": cond["c_img"][:, :, hi:hi_end, wi:wi_end],
                "c_txt": cond["c_txt"]
            }
            if uncond:
                tile_uncond = {
                    "c_img": uncond["c_img"][:, :, hi:hi_end, wi:wi_end],
                    "c_txt": uncond["c_txt"]
                }
            tile_eps = self.predict_noise(model, tile_x, t, tile_cond, tile_uncond, cfg_scale)
            # accumulate noise
            eps[:, :, hi:hi_end, wi:wi_end] += tile_eps * weights
            count[:, :, hi:hi_end, wi:wi_end] += weights
        # average on noise (score)
        eps.div_(count)
        return eps
    
    @torch.no_grad()
    def p_sample(
        self,
        model: ControlLDM,
        x: torch.Tensor,
        t: torch.Tensor,
        index: torch.Tensor,
        cond: Dict[str, torch.Tensor],
        uncond: Optional[Dict[str, torch.Tensor]],
        cfg_scale: float,
        cond_fn: Optional[Guidance],
        tiled: bool,
        tile_size: int,
        tile_stride: int,
        controller: Optional[AttentionControl]=None
    ) -> torch.Tensor:
        if tiled:
            eps = self.predict_noise_tiled(model, x, t, cond, uncond, cfg_scale, tile_size, tile_stride)
        else:
            eps = self.predict_noise(model, x, t, cond, uncond, cfg_scale)
        pred_x0 = self._predict_xstart_from_eps(x, index, eps)
        if cond_fn:
            assert not tiled, f"tiled sampling currently doesn't support guidance"
            pred_x0 = self.apply_cond_fn(model, pred_x0, t, index, cond_fn)

        if controller is not None:
            pred_x0 = controller.update_x0(pred_x0)

        model_mean, model_variance, _ = self.q_posterior_mean_variance(pred_x0, x, index)
        noise = torch.randn_like(x)
        nonzero_mask = (
            (index != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
        )
        x_prev = model_mean + nonzero_mask * torch.sqrt(model_variance) * noise
        return x_prev

    @torch.no_grad()
    def sample(
        self,
        model: ControlLDM,
        device: str,
        steps: int,
        batch_size: int,
        x_size: Tuple[int],
        cond: Dict[str, torch.Tensor],
        uncond: Dict[str, torch.Tensor],
        cfg_scale: float,
        cond_fn: Optional[Guidance]=None,
        tiled: bool=False,
        tile_size: int=-1,
        tile_stride: int=-1,
        x_T: Optional[torch.Tensor]=None,
        progress: bool=True,
        progress_leave: bool=True,
        non_pad_ratio: Tuple[float]=(1, 1),
    ) -> torch.Tensor:
        self.make_schedule(steps)
        self.to(device)
        if x_T is None:
            # TODO: not convert to float32, may trigger an error
            img = torch.randn((batch_size, *x_size), device=device)
        else:
            img = x_T
        timesteps = np.flip(self.timesteps) # [1000, 950, 900, ...]
        total_steps = len(self.timesteps)
        iterator = tqdm(timesteps, total=total_steps, leave=progress_leave, disable=not progress)

        if model.controller is not None:
            # non_pad_flows = model.controller.step_store["flows"].copy()
            # for j, flow in enumerate(model.controller.step_store["flows"]): 
            #     if flow is not None:
            #         model.controller.step_store["flows"][j] = pad_to_multiples_of(model.controller.step_store["flows"][j], 8)
            if not (model.controller.ToMe_period[0]):
                vidtome.update_patch(model, controller=model.controller)
                                    # flows=non_pad_flows, \
                                    # flow_confids=model.controller.step_store["flow_confids"].copy(), )
                                

        for i, step in enumerate(iterator):
            torch.cuda.empty_cache()
            if model.controller is not None:
                model.controller.set_step(i)
                if i == int((total_steps * model.controller.ToMe_period[0])):
                    print(f"[INFO] activating ToMe @ step {i} ...")
                    model.activate_vidtome()
                    vidtome.update_patch(model, controller=model.controller)
                                    # flows=non_pad_flows, \
                                    # flow_confids=model.controller.step_store["flow_confids"].copy(), 
                    # for j, flow in enumerate(model.controller.step_store["flows"]): 
                    #     if flow is not None:
                    #         model.controller.step_store["flows"][j] = pad_to_multiples_of(model.controller.step_store["flows"][j], 8)

                if i <= int((total_steps * model.controller.ToMe_period[1])) and i >= int((total_steps * model.controller.ToMe_period[0])):
                    # ratio = model.controller.merge_ratio[0] - (i / total_steps) * (model.controller.merge_ratio[0] - model.controller.merge_ratio[1])
                    ToMe_start_step = int((total_steps * model.controller.ToMe_period[0]))
                    ToMe_end_step = int((total_steps * model.controller.ToMe_period[1]))
                    s = (i - ToMe_start_step) / (ToMe_end_step - ToMe_start_step)
                    ratio = model.controller.merge_ratio[1] + (np.cos(np.pi / 2 * s)) * (model.controller.merge_ratio[0] - model.controller.merge_ratio[1])
                    vidtome.update_patch(model, current_step=i, 
                                local_merge_ratio = ratio)
                                # flows=model.controller.step_store["flows"], occlusion_masks=model.controller.step_store["occ_masks"],
                                # flow_confids=model.controller.step_store["flow_confids"])
                    print(f"[INFO] updating merging ratio to {ratio:.3f} @ step {i} s {s:.3f} ...")
            ts = torch.full((batch_size,), step, device=device, dtype=torch.long)
            index = torch.full_like(ts, fill_value=total_steps - i - 1)
            img = self.p_sample(
                model, img, ts, index, cond, uncond, cfg_scale, cond_fn,
                tiled, tile_size, tile_stride,
                controller=model.controller
            )
            if model.controller is not None:
                # model.controller.decoded_imgs.clear()
                # for img_ in img:
                #     sample = model.vae_decode(img_[None])
                #     sample = (sample + 1) / 2
                #     # sample = wavelet_reconstruction(sample, clean)
                #     # sample = F.interpolate(sample, size=self.final_size, mode="bicubic", antialias=True)
                #     sample = rearrange(sample * 255., "n c h w -> n h w c")
                #     sample = sample.contiguous().clamp(0, 255).to(torch.uint8).cpu().numpy()
                #     model.controller.decoded_imgs.append(sample)

                # img = model.controller.update_x0(img)
                # img = model.controller.merge_x0(img, merge_ratio=1)
                # img = model.controller.merge_x0_scores(img, merge_ratio=1)
                # img = (img + model.controller.merge_x0(img, merge_ratio=1)) / 2
                
                if i == int((total_steps * model.controller.ToMe_period[1])):
                    print(f"[INFO] removing ToMe patch @ step {i} ...")
                    vidtome.remove_patch(model)

            if cond_fn and self.context["g_apply"]:
                loss_val = self.context["g_loss"]
                desc = f"Spaced Sampler With Guidance, Loss: {loss_val:.6f}"
            else:
                desc = "Spaced Sampler"
            iterator.set_description(desc)


        # if model.controller is not None:
            # merge.visualize_correspondence(img[0][None], img[1][None], ratio=0.05)
            # img = img = model.controller.merge_x0_scores(img, merge_ratio=0.5)
        return img