File size: 8,300 Bytes
1de8821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import random
import math

from PIL import Image
import numpy as np
import cv2
import torch
from torch.nn import functional as F


# https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/image_datasets.py
def center_crop_arr(pil_image, image_size):
    # We are not on a new enough PIL to support the `reducing_gap`
    # argument, which uses BOX downsampling at powers of two first.
    # Thus, we do it by hand to improve downsample quality.
    while min(*pil_image.size) >= 2 * image_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    scale = image_size / min(*pil_image.size)
    pil_image = pil_image.resize(
        tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
    )

    arr = np.array(pil_image)
    crop_y = (arr.shape[0] - image_size) // 2
    crop_x = (arr.shape[1] - image_size) // 2
    return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]


# https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/image_datasets.py
def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0):
    min_smaller_dim_size = math.ceil(image_size / max_crop_frac)
    max_smaller_dim_size = math.ceil(image_size / min_crop_frac)
    smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1)

    # We are not on a new enough PIL to support the `reducing_gap`
    # argument, which uses BOX downsampling at powers of two first.
    # Thus, we do it by hand to improve downsample quality.
    while min(*pil_image.size) >= 2 * smaller_dim_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    scale = smaller_dim_size / min(*pil_image.size)
    pil_image = pil_image.resize(
        tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
    )

    arr = np.array(pil_image)
    crop_y = random.randrange(arr.shape[0] - image_size + 1)
    crop_x = random.randrange(arr.shape[1] - image_size + 1)
    return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]


# https://github.com/XPixelGroup/BasicSR/blob/master/basicsr/data/transforms.py
def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False):
    """Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees).

    We use vertical flip and transpose for rotation implementation.
    All the images in the list use the same augmentation.

    Args:
        imgs (list[ndarray] | ndarray): Images to be augmented. If the input
            is an ndarray, it will be transformed to a list.
        hflip (bool): Horizontal flip. Default: True.
        rotation (bool): Ratotation. Default: True.
        flows (list[ndarray]: Flows to be augmented. If the input is an
            ndarray, it will be transformed to a list.
            Dimension is (h, w, 2). Default: None.
        return_status (bool): Return the status of flip and rotation.
            Default: False.

    Returns:
        list[ndarray] | ndarray: Augmented images and flows. If returned
            results only have one element, just return ndarray.

    """
    hflip = hflip and random.random() < 0.5
    vflip = rotation and random.random() < 0.5
    rot90 = rotation and random.random() < 0.5

    def _augment(img):
        if hflip:  # horizontal
            cv2.flip(img, 1, img)
        if vflip:  # vertical
            cv2.flip(img, 0, img)
        if rot90:
            img = img.transpose(1, 0, 2)
        return img

    def _augment_flow(flow):
        if hflip:  # horizontal
            cv2.flip(flow, 1, flow)
            flow[:, :, 0] *= -1
        if vflip:  # vertical
            cv2.flip(flow, 0, flow)
            flow[:, :, 1] *= -1
        if rot90:
            flow = flow.transpose(1, 0, 2)
            flow = flow[:, :, [1, 0]]
        return flow

    if not isinstance(imgs, list):
        imgs = [imgs]
    imgs = [_augment(img) for img in imgs]
    if len(imgs) == 1:
        imgs = imgs[0]

    if flows is not None:
        if not isinstance(flows, list):
            flows = [flows]
        flows = [_augment_flow(flow) for flow in flows]
        if len(flows) == 1:
            flows = flows[0]
        return imgs, flows
    else:
        if return_status:
            return imgs, (hflip, vflip, rot90)
        else:
            return imgs


# https://github.com/XPixelGroup/BasicSR/blob/master/basicsr/utils/img_process_util.py
def filter2D(img, kernel):
    """PyTorch version of cv2.filter2D

    Args:
        img (Tensor): (b, c, h, w)
        kernel (Tensor): (b, k, k)
    """
    k = kernel.size(-1)
    b, c, h, w = img.size()
    if k % 2 == 1:
        img = F.pad(img, (k // 2, k // 2, k // 2, k // 2), mode='reflect')
    else:
        raise ValueError('Wrong kernel size')

    ph, pw = img.size()[-2:]

    if kernel.size(0) == 1:
        # apply the same kernel to all batch images
        img = img.view(b * c, 1, ph, pw)
        kernel = kernel.view(1, 1, k, k)
        return F.conv2d(img, kernel, padding=0).view(b, c, h, w)
    else:
        img = img.view(1, b * c, ph, pw)
        kernel = kernel.view(b, 1, k, k).repeat(1, c, 1, 1).view(b * c, 1, k, k)
        return F.conv2d(img, kernel, groups=b * c).view(b, c, h, w)


# https://github.com/XPixelGroup/BasicSR/blob/033cd6896d898fdd3dcda32e3102a792efa1b8f4/basicsr/utils/color_util.py#L186
def rgb2ycbcr_pt(img, y_only=False):
    """Convert RGB images to YCbCr images (PyTorch version).

    It implements the ITU-R BT.601 conversion for standard-definition television. See more details in
    https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.

    Args:
        img (Tensor): Images with shape (n, 3, h, w), the range [0, 1], float, RGB format.
         y_only (bool): Whether to only return Y channel. Default: False.

    Returns:
        (Tensor): converted images with the shape (n, 3/1, h, w), the range [0, 1], float.
    """
    if y_only:
        weight = torch.tensor([[65.481], [128.553], [24.966]]).to(img)
        out_img = torch.matmul(img.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0
    else:
        weight = torch.tensor([[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]).to(img)
        bias = torch.tensor([16, 128, 128]).view(1, 3, 1, 1).to(img)
        out_img = torch.matmul(img.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias

    out_img = out_img / 255.
    return out_img


def to_pil_image(inputs, mem_order, val_range, channel_order):
    # convert inputs to numpy array
    if isinstance(inputs, torch.Tensor):
        inputs = inputs.cpu().numpy()
    assert isinstance(inputs, np.ndarray)
    
    # make sure that inputs is a 4-dimension array
    if mem_order in ["hwc", "chw"]:
        inputs = inputs[None, ...]
        mem_order = f"n{mem_order}"
    # to NHWC
    if mem_order == "nchw":
        inputs = inputs.transpose(0, 2, 3, 1)
    # to RGB
    if channel_order == "bgr":
        inputs = inputs[..., ::-1].copy()
    else:
        assert channel_order == "rgb"
    
    if val_range == "0,1":
        inputs = inputs * 255
    elif val_range == "-1,1":
        inputs = (inputs + 1) * 127.5
    else:
        assert val_range == "0,255"
    
    inputs = inputs.clip(0, 255).astype(np.uint8)
    return [inputs[i] for i in range(len(inputs))]


def put_text(pil_img_arr, text):
    cv_img = pil_img_arr[..., ::-1].copy()
    cv2.putText(cv_img, text, (10, 35), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
    return cv_img[..., ::-1].copy()


def auto_resize(img: Image.Image, size: int) -> Image.Image:
    short_edge = min(img.size)
    if short_edge < size:
        r = size / short_edge
        img = img.resize(
            tuple(math.ceil(x * r) for x in img.size), Image.BICUBIC
        )
    else:
        # make a deep copy of this image for safety
        img = img.copy()
    return img


def pad(img: np.ndarray, scale: int) -> np.ndarray:
    h, w = img.shape[:2]
    ph = 0 if h % scale == 0 else math.ceil(h / scale) * scale - h
    pw = 0 if w % scale == 0 else math.ceil(w / scale) * scale - w
    return np.pad(
        img, pad_width=((0, ph), (0, pw), (0, 0)), mode="constant",
        constant_values=0
    )