Spaces:
Runtime error
Runtime error
File size: 12,235 Bytes
c3d0293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from copy import deepcopy
import torch
import pandas as pd
import numpy as np
def pad_sample_with_zeros(sample, max_len=250):
# pad inp, change lenghts, and pad is transition
seq_len, n_feats = sample.shape
len_to_pad = max_len - seq_len
np.zeros_like(sample)
sample_padding = np.zeros((len_to_pad, n_feats))
sample = np.concatenate((sample, sample_padding))
return sample
def split2subs(motions, step_sizes, batch_size, blend_len, max_motion_length):
#### motions [1, 263, 1, Nlength] -> [263, Nlength] -> [NLength, 263]
new_motions = []
new_lengths = []
new_motions.append(pad_sample_with_zeros(motions[..., :step_sizes[0] - blend_len].squeeze().permute(1, 0).cpu().numpy(), max_motion_length))
new_lengths.append(step_sizes[0] - blend_len)
for i in range(1, batch_size-1):
curr = pad_sample_with_zeros(motions[..., step_sizes[i-1]-blend_len:step_sizes[i]-blend_len].squeeze().permute(1, 0).cpu().numpy(), max_motion_length)
new_motions.append(curr)
new_lengths.append(step_sizes[i] - step_sizes[i-1])
new_motions.append(pad_sample_with_zeros(motions[..., step_sizes[-1]-blend_len:].squeeze().permute(1, 0).cpu().numpy(), max_motion_length))
new_lengths.append(step_sizes[-1]-step_sizes[-2]+blend_len)
new_motions = np.stack(new_motions, axis=0)
new_motions = torch.from_numpy(new_motions)
new_lengths = np.stack(new_lengths, axis=0)
new_lengths = torch.from_numpy(new_lengths).long()
return new_motions, new_lengths
def unfold_sample_arb_len(sample, handshake_size, step_sizes, final_n_frames, model_kwargs):
old_sample = deepcopy(sample)
new_shape = list(old_sample.shape)
new_shape[0] = 1
new_shape[-1] = final_n_frames
sample = torch.zeros(new_shape, dtype=sample.dtype, device=sample.device)
sample[0, :, :, :model_kwargs['y']['lengths'][0]] = old_sample[0, :, :, :model_kwargs['y']['lengths'][0]]
for sample_i, len_i in enumerate(step_sizes):
if sample_i == 0:
continue
start = step_sizes[sample_i-1]
sample[0, :, :, start:len_i] = old_sample[sample_i, :, :, handshake_size:model_kwargs['y']['lengths'][sample_i]]
return sample
def double_take_arb_len(diffusion, model, model_kwargs, n_frames, blend_len=10, handshake_size=20, device="cpu", progress=True):
sample_fn = diffusion.p_sample_loop
blend_len = blend_len
handshake_size = handshake_size
batch_size = len(model_kwargs['y']['text'])
# Unfolding - orig
sample = sample_fn(
model,
(batch_size, model.njoints, model.nfeats, n_frames),
clip_denoised=False,
model_kwargs=model_kwargs,
skip_timesteps=0, # 0 is the default value - i.e. don't skip any step
init_image=None,
progress=progress,
dump_steps=None,
noise=None,
const_noise=False,
unfolding_handshake=handshake_size,
)
model_kwargs['y']['scale'] = torch.ones(batch_size-1, device=device) * 0
sample = sample["output"] #### [5, 263, 1 196]
'''
1. 替换 sample
2. model_kwargs['y']['lengths']
'''
new_sample_seq_len = (sample.shape[-1] - 2 * handshake_size) * 2 + handshake_size
bs, feats, joints, seq_len = sample.shape
new_sample = torch.zeros((bs-1, feats, joints, new_sample_seq_len), dtype=sample.dtype, device=sample.device)
generated_motion = []
right_constraint = []
left_constraint = []
for ii in range(bs): ##### 按左中右拆分 Motion
generated_motion.append(deepcopy(sample[ii, :, :, handshake_size: model_kwargs['y']['lengths'][ii]-handshake_size])) # w/o start and end
left_constraint.append(deepcopy(sample[ii, :, :, :handshake_size])) # left side
right_constraint.append(deepcopy(sample[ii, :, :, model_kwargs['y']['lengths'][ii] - handshake_size: model_kwargs['y']['lengths'][ii]]))
buffer = [] #### 存放剩下的动作部分的长度,也就是 generated_motion 的长度
for ii in range(bs):
buffer.append(int(model_kwargs['y']['lengths'][ii]) - 2*handshake_size)
for ii in range(bs - 1): # run over bs, 把 N句话 合并成 N-1 句话,新 motion 的组成 [gm[i-1], right[i-1], gm[i]], 长度是 2 * gm_length + hand_size
new_sample[ii, :, :, :buffer[ii]] = generated_motion[ii]
new_sample[ii, :, :, buffer[ii]: buffer[ii]+handshake_size] = right_constraint[ii] # add transition
new_sample[ii, :, :, buffer[ii]+handshake_size : buffer[ii]+handshake_size+buffer[ii+1]] = generated_motion[ii + 1]
# "in between"
model_kwargs['y']['inpainted_motion'] = new_sample
model_kwargs['y']['inpainting_mask'] = torch.ones_like(new_sample, dtype=torch.float,
device=new_sample.device)
for ii in range(bs - 1): # run over bs
if blend_len >= 2:
'''
渐变混合
1. 在左边 gm[i-1] 靠后 blend_len 的区域,渐变地保留原本的内容
2. 在右边 gm[i] 靠前的 blend_len 的区域,渐变保留原本的内容
3. 似乎是 right 的部分完全保留,也就是用前一个动作的结束座位后一个动作的开头
'''
model_kwargs['y']['inpainting_mask'][ii, :, :, buffer[ii] - blend_len: buffer[ii]] = \
torch.arange(0.85, 0.0, -0.85 / int(blend_len))
model_kwargs['y']['inpainting_mask'][ii, :, :, buffer[ii] + handshake_size: buffer[ii] + handshake_size + blend_len] = \
torch.arange(0.0, 0.85, 0.85 / int(blend_len))
model_kwargs['y']['uncond'] = 1.0 ### 混合多段语意后,cond 没什么意义,而且需要生成的内容很少
model_kwargs['y']['text'] = model_kwargs['y']['text'][:bs-1]
sample_fn = diffusion.p_sample_loop # double take sample function
n_frames = new_sample_seq_len
orig_lens = deepcopy(model_kwargs['y']['lengths'])
for ii in range (len(model_kwargs['y']['lengths'])-1):
model_kwargs['y']['lengths'][ii] = model_kwargs['y']['lengths'][ii] + model_kwargs['y']['lengths'][ii+1] - 3*handshake_size
model_kwargs['y']['lengths'] = model_kwargs['y']['lengths'][:-1]
double_take_sample = sample_fn(
model,
(batch_size-1, model.njoints, model.nfeats, n_frames),
clip_denoised=False,
model_kwargs=model_kwargs,
skip_timesteps=0, # 0 is the default value - i.e. don't skip any step
init_image=new_sample, #TODO!! check if plausible or not!
progress=progress,
dump_steps=None,
noise=None,
const_noise=False,
)
double_take_sample = double_take_sample["output"]
model_kwargs['y']['lengths'] = orig_lens
# rebuild_orig:
rebuild_sample = torch.zeros_like(sample)
'''
sample -> left + motion + right
double_take_sample -> motion1 + blend + hand + blend + motion2, 其中长度表示 : motion1 + blend = motion2 + blend = motion
'''
transitions, right_side, left_side = [], [], []
for ii in range(bs - 1): # run over bs
transitions.append(double_take_sample[ii, :, :, buffer[ii]: buffer[ii]+handshake_size])
right_side.append(double_take_sample[ii, :, :, buffer[ii] + handshake_size: buffer[ii] + handshake_size + blend_len]) # M1 blending..
left_side.append(double_take_sample[ii, :, :, buffer[ii] - blend_len:buffer[ii]]) # M0 blending...
'''
translation 储存的是 hand
right_side 存右边的 blend
left_side 村左边的 blend
'''
rebuild_sample[0, :, :, :handshake_size] = left_constraint[0] # Fill missing
rebuild_sample[-1, :, :, buffer[-1]+handshake_size: buffer[-1]+2*handshake_size] = right_constraint[-1] # Fill missing
'''
展开 double take 的结果, 还原会原本的状态,即 left + motion + right
'''
for ii in range(bs - 1):
rebuild_sample[ii + 1, :, :, :handshake_size] = transitions[ii]
rebuild_sample[ii, :, :, handshake_size: buffer[ii]+handshake_size] = generated_motion[ii]
rebuild_sample[ii, :, :, buffer[ii]+handshake_size: buffer[ii]+2*handshake_size] = transitions[ii] #### motion1 的 right = motion2 的 left
rebuild_sample[ii, :, :, handshake_size + buffer[ii]-blend_len: handshake_size + buffer[ii]] = left_side[ii]
# if ii > 0:
rebuild_sample[-1, :, :, handshake_size: buffer[-1] + handshake_size] = generated_motion[-1]
for ii in range(bs - 1):
rebuild_sample[ii+1, :, :, handshake_size:handshake_size + blend_len] = right_side[ii]
double_take_sample = deepcopy(rebuild_sample)
return double_take_sample
def double_take(prompt=None, path=None, num_repetitions=1, model=None, diffusion=None, handshake_size=20, blend_len=10, default_length=196, guidance_param=2.5, device="cpu", progress=True):
assert model is not None
assert diffusion is not None
if prompt is not None:
texts = prompt.split("|")
num_samples = len(texts)
length = []
captions = []
for i in range(len(texts)):
nframes = texts[i].split(",")[0]
try:
nframes = int(nframes)
curr_text = texts[i].split(",")[1::]
curr_text = ",".join(curr_text)
except:
nframes = default_length
curr_text = texts[i]
captions.append(curr_text)
length.append(nframes)
model_kwargs = {'y': {
'mask': torch.ones((len(texts), 1, 1, default_length)), # 196 is humanml max frames number
'lengths': torch.tensor(length),
'text': captions,
'tokens': [''],
'scale': torch.ones(len(texts))*guidance_param
}}
elif path.split(".")[-1] == "csv":
df = pd.read_csv(path)
num_samples = len(list(df['text']))
model_kwargs = {'y': {
'mask': torch.ones((len(list(df['text'])), 1, 1, default_length)), #196 is humanml max frames number
'lengths': torch.tensor(list(df['length'])),
'text': list(df['text']),
'tokens': [''],
'scale': torch.ones(len(list(df['text'])))*guidance_param
}}
elif path.split(".")[-1] == "txt":
with open(path, 'r') as fr:
texts = fr.readlines()
texts = [s.replace('\n', '') for s in texts]
num_samples = len(texts)
model_kwargs = {'y': {
'mask': torch.ones((len(texts), 1, 1, default_length)), # 196 is humanml max frames number
'lengths': torch.tensor([default_length]*len(texts)),
'text': texts,
'tokens': [''],
'scale': torch.ones(len(texts))*guidance_param
}}
all_motions = []
for rep_i in range(num_repetitions):
if guidance_param != 1:
model_kwargs['y']['scale'] = torch.ones(num_samples, device=device) * guidance_param
model_kwargs['y'] = {key: val.to(device) if torch.is_tensor(val) else val for key, val in model_kwargs['y'].items()}
max_arb_len = model_kwargs['y']['lengths'].max()
min_arb_len = 2 * handshake_size + 2*blend_len + 10
for ii, len_s in enumerate(model_kwargs['y']['lengths']):
if len_s > max_arb_len:
model_kwargs['y']['lengths'][ii] = max_arb_len
if len_s < min_arb_len:
model_kwargs['y']['lengths'][ii] = min_arb_len
sample = double_take_arb_len(diffusion, model, model_kwargs, max_arb_len, blend_len, handshake_size, device, progress=progress)
step_sizes = np.zeros(len(model_kwargs['y']['lengths']), dtype=int)
for ii, len_i in enumerate(model_kwargs['y']['lengths']):
if ii == 0:
step_sizes[ii] = len_i
continue
step_sizes[ii] = step_sizes[ii-1] + len_i - handshake_size
final_n_frames = step_sizes[-1]
sample = unfold_sample_arb_len(sample, handshake_size, step_sizes, final_n_frames, model_kwargs)
all_motions.append(sample)
all_motions = torch.cat(all_motions, dim=0)
return all_motions, step_sizes
|