File size: 12,235 Bytes
c3d0293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from copy import deepcopy
import torch
import pandas as pd
import numpy as np

def pad_sample_with_zeros(sample, max_len=250):
    # pad inp, change lenghts, and pad is transition
    seq_len, n_feats = sample.shape
    len_to_pad = max_len - seq_len
    np.zeros_like(sample)
    sample_padding = np.zeros((len_to_pad, n_feats))
    sample = np.concatenate((sample, sample_padding))
    return sample

def split2subs(motions, step_sizes, batch_size, blend_len, max_motion_length):
    #### motions [1, 263, 1, Nlength] -> [263, Nlength] -> [NLength, 263]
    new_motions = []
    new_lengths = []
    new_motions.append(pad_sample_with_zeros(motions[..., :step_sizes[0] - blend_len].squeeze().permute(1, 0).cpu().numpy(), max_motion_length))
    new_lengths.append(step_sizes[0] - blend_len)
    for i in range(1, batch_size-1):
        curr = pad_sample_with_zeros(motions[..., step_sizes[i-1]-blend_len:step_sizes[i]-blend_len].squeeze().permute(1, 0).cpu().numpy(), max_motion_length)
        new_motions.append(curr)
        new_lengths.append(step_sizes[i] - step_sizes[i-1])

    new_motions.append(pad_sample_with_zeros(motions[..., step_sizes[-1]-blend_len:].squeeze().permute(1, 0).cpu().numpy(), max_motion_length))
    new_lengths.append(step_sizes[-1]-step_sizes[-2]+blend_len)

    new_motions = np.stack(new_motions, axis=0)
    new_motions = torch.from_numpy(new_motions)
    new_lengths = np.stack(new_lengths, axis=0)
    new_lengths = torch.from_numpy(new_lengths).long()
    return new_motions, new_lengths


def unfold_sample_arb_len(sample, handshake_size, step_sizes, final_n_frames, model_kwargs):
    old_sample = deepcopy(sample)
    new_shape = list(old_sample.shape)
    new_shape[0] = 1
    new_shape[-1] = final_n_frames
    sample = torch.zeros(new_shape, dtype=sample.dtype, device=sample.device)
    sample[0, :, :, :model_kwargs['y']['lengths'][0]] = old_sample[0, :, :, :model_kwargs['y']['lengths'][0]]
    for sample_i, len_i in enumerate(step_sizes):
        if sample_i == 0:
            continue
        start = step_sizes[sample_i-1]
        sample[0, :, :, start:len_i] = old_sample[sample_i, :, :, handshake_size:model_kwargs['y']['lengths'][sample_i]]
    return sample


def double_take_arb_len(diffusion, model, model_kwargs, n_frames, blend_len=10, handshake_size=20, device="cpu", progress=True):
    sample_fn = diffusion.p_sample_loop
    blend_len = blend_len
    handshake_size = handshake_size

    batch_size = len(model_kwargs['y']['text'])

    # Unfolding - orig
    sample = sample_fn(
        model,
        (batch_size, model.njoints, model.nfeats, n_frames),
        clip_denoised=False,
        model_kwargs=model_kwargs,
        skip_timesteps=0,  # 0 is the default value - i.e. don't skip any step
        init_image=None,
        progress=progress,
        dump_steps=None,
        noise=None,
        const_noise=False,
        unfolding_handshake=handshake_size,
    )

    model_kwargs['y']['scale'] = torch.ones(batch_size-1, device=device) * 0
    sample = sample["output"]       #### [5, 263, 1 196]

    '''
    1. 替换 sample 
    2. model_kwargs['y']['lengths']
    '''

    new_sample_seq_len = (sample.shape[-1] - 2 * handshake_size) * 2 + handshake_size

    bs, feats, joints, seq_len = sample.shape
    new_sample = torch.zeros((bs-1, feats, joints, new_sample_seq_len), dtype=sample.dtype, device=sample.device)

    generated_motion = []
    right_constraint = []
    left_constraint = []

    for ii in range(bs):        #####  按左中右拆分 Motion
        generated_motion.append(deepcopy(sample[ii, :, :, handshake_size: model_kwargs['y']['lengths'][ii]-handshake_size])) # w/o start and end
        left_constraint.append(deepcopy(sample[ii, :, :, :handshake_size]))  # left side
        right_constraint.append(deepcopy(sample[ii, :, :, model_kwargs['y']['lengths'][ii] - handshake_size: model_kwargs['y']['lengths'][ii]]))

    buffer = []     #### 存放剩下的动作部分的长度,也就是 generated_motion 的长度
    for ii in range(bs):
        buffer.append(int(model_kwargs['y']['lengths'][ii]) - 2*handshake_size)
    for ii in range(bs - 1):  # run over bs, 把 N句话 合并成 N-1 句话,新 motion 的组成 [gm[i-1], right[i-1], gm[i]], 长度是 2 * gm_length + hand_size
        new_sample[ii, :, :, :buffer[ii]] = generated_motion[ii]
        new_sample[ii, :, :, buffer[ii]: buffer[ii]+handshake_size] = right_constraint[ii] # add transition
        new_sample[ii, :, :, buffer[ii]+handshake_size : buffer[ii]+handshake_size+buffer[ii+1]] = generated_motion[ii + 1]

    # "in between"
    model_kwargs['y']['inpainted_motion'] = new_sample
    model_kwargs['y']['inpainting_mask'] = torch.ones_like(new_sample, dtype=torch.float,
                                                            device=new_sample.device)

    for ii in range(bs - 1):  # run over bs
        if blend_len >= 2:
            '''
            渐变混合
            1. 在左边 gm[i-1] 靠后 blend_len 的区域,渐变地保留原本的内容
            2. 在右边 gm[i] 靠前的 blend_len 的区域,渐变保留原本的内容
            3. 似乎是 right 的部分完全保留,也就是用前一个动作的结束座位后一个动作的开头 
            '''

            model_kwargs['y']['inpainting_mask'][ii, :, :, buffer[ii] - blend_len: buffer[ii]] = \
                torch.arange(0.85, 0.0, -0.85 / int(blend_len))
            model_kwargs['y']['inpainting_mask'][ii, :, :, buffer[ii] + handshake_size: buffer[ii] + handshake_size + blend_len] = \
                torch.arange(0.0, 0.85, 0.85 / int(blend_len))

    model_kwargs['y']['uncond'] = 1.0       ### 混合多段语意后,cond 没什么意义,而且需要生成的内容很少
    model_kwargs['y']['text'] = model_kwargs['y']['text'][:bs-1]
    sample_fn = diffusion.p_sample_loop  # double take sample function
    n_frames = new_sample_seq_len
    orig_lens = deepcopy(model_kwargs['y']['lengths'])
    for ii in range (len(model_kwargs['y']['lengths'])-1):
        model_kwargs['y']['lengths'][ii] = model_kwargs['y']['lengths'][ii] + model_kwargs['y']['lengths'][ii+1] - 3*handshake_size
    model_kwargs['y']['lengths'] = model_kwargs['y']['lengths'][:-1]

    double_take_sample = sample_fn(
        model,
        (batch_size-1, model.njoints, model.nfeats, n_frames),
        clip_denoised=False,
        model_kwargs=model_kwargs,
        skip_timesteps=0,  # 0 is the default value - i.e. don't skip any step
        init_image=new_sample, #TODO!! check if plausible or not!
        progress=progress,
        dump_steps=None,
        noise=None,
        const_noise=False,
    )
    double_take_sample = double_take_sample["output"]
    model_kwargs['y']['lengths'] = orig_lens
    # rebuild_orig:
    rebuild_sample = torch.zeros_like(sample)

    '''
    sample -> left + motion + right
    double_take_sample -> motion1 + blend + hand + blend + motion2, 其中长度表示 : motion1 + blend = motion2 + blend = motion
    '''

    transitions, right_side, left_side = [], [], []
    for ii in range(bs - 1):  # run over bs
        transitions.append(double_take_sample[ii, :, :, buffer[ii]: buffer[ii]+handshake_size])
        right_side.append(double_take_sample[ii, :, :, buffer[ii] + handshake_size: buffer[ii] + handshake_size + blend_len]) # M1 blending..
        left_side.append(double_take_sample[ii, :, :, buffer[ii] - blend_len:buffer[ii]]) # M0 blending...

        '''
        translation 储存的是 hand
        right_side 存右边的 blend
        left_side 村左边的 blend
        '''


    rebuild_sample[0, :, :, :handshake_size] = left_constraint[0] # Fill missing
    rebuild_sample[-1, :, :, buffer[-1]+handshake_size: buffer[-1]+2*handshake_size] = right_constraint[-1] # Fill missing

    '''
    展开 double take 的结果, 还原会原本的状态,即 left + motion + right
    '''

    for ii in range(bs - 1):
        rebuild_sample[ii + 1, :, :, :handshake_size] = transitions[ii]
        rebuild_sample[ii, :, :, handshake_size: buffer[ii]+handshake_size] = generated_motion[ii]
        rebuild_sample[ii, :, :, buffer[ii]+handshake_size: buffer[ii]+2*handshake_size] = transitions[ii]      #### motion1 的 right = motion2 的 left
        rebuild_sample[ii, :, :, handshake_size + buffer[ii]-blend_len: handshake_size + buffer[ii]] = left_side[ii]
        # if ii > 0:
    rebuild_sample[-1, :, :, handshake_size: buffer[-1] + handshake_size] = generated_motion[-1]
    for ii in range(bs - 1):
        rebuild_sample[ii+1, :, :, handshake_size:handshake_size + blend_len] = right_side[ii]

    double_take_sample = deepcopy(rebuild_sample)

    return double_take_sample

def double_take(prompt=None, path=None, num_repetitions=1, model=None, diffusion=None, handshake_size=20, blend_len=10, default_length=196, guidance_param=2.5, device="cpu", progress=True):
    assert model is not None
    assert diffusion is not None
    if prompt is not None:
        texts = prompt.split("|")
        num_samples = len(texts)
        length = []
        captions = []
        for i in range(len(texts)):
            nframes = texts[i].split(",")[0]
            try:
                nframes = int(nframes)
                curr_text = texts[i].split(",")[1::]
                curr_text = ",".join(curr_text)
            except:
                nframes = default_length
                curr_text = texts[i]

            captions.append(curr_text)
            length.append(nframes)

        model_kwargs = {'y': {
            'mask': torch.ones((len(texts), 1, 1, default_length)), # 196 is humanml max frames number
            'lengths': torch.tensor(length),
            'text': captions,
            'tokens': [''],
            'scale': torch.ones(len(texts))*guidance_param
        }}
    elif path.split(".")[-1] == "csv":
        df = pd.read_csv(path)
        num_samples = len(list(df['text']))  
        model_kwargs = {'y': {
            'mask': torch.ones((len(list(df['text'])), 1, 1, default_length)), #196 is humanml max frames number
            'lengths': torch.tensor(list(df['length'])),
            'text': list(df['text']),
            'tokens': [''],
            'scale': torch.ones(len(list(df['text'])))*guidance_param
        }}  
    elif path.split(".")[-1] == "txt":
        with open(path, 'r') as fr:
            texts = fr.readlines()
        texts = [s.replace('\n', '') for s in texts]
        num_samples = len(texts)      
        model_kwargs = {'y': {
            'mask': torch.ones((len(texts), 1, 1, default_length)), # 196 is humanml max frames number
            'lengths': torch.tensor([default_length]*len(texts)),
            'text': texts,
            'tokens': [''],
            'scale': torch.ones(len(texts))*guidance_param
        }}

    all_motions = []

    for rep_i in range(num_repetitions):
        if guidance_param != 1:
            model_kwargs['y']['scale'] = torch.ones(num_samples, device=device) * guidance_param
        model_kwargs['y'] = {key: val.to(device) if torch.is_tensor(val) else val for key, val in model_kwargs['y'].items()}

        max_arb_len = model_kwargs['y']['lengths'].max()
        min_arb_len = 2 * handshake_size + 2*blend_len + 10

        for ii, len_s in enumerate(model_kwargs['y']['lengths']):
            if len_s > max_arb_len:
                model_kwargs['y']['lengths'][ii] = max_arb_len
            if len_s < min_arb_len:
                model_kwargs['y']['lengths'][ii] = min_arb_len

        sample = double_take_arb_len(diffusion, model, model_kwargs, max_arb_len, blend_len, handshake_size, device, progress=progress)    
        step_sizes = np.zeros(len(model_kwargs['y']['lengths']), dtype=int)
        for ii, len_i in enumerate(model_kwargs['y']['lengths']):
            if ii == 0:
                step_sizes[ii] = len_i
                continue
            step_sizes[ii] = step_sizes[ii-1] + len_i - handshake_size

        final_n_frames = step_sizes[-1]
        sample = unfold_sample_arb_len(sample, handshake_size, step_sizes, final_n_frames, model_kwargs)

        all_motions.append(sample)
    
    all_motions = torch.cat(all_motions, dim=0)
    return all_motions, step_sizes