File size: 1,180 Bytes
55ae01b
 
 
20fc64c
55ae01b
 
 
5bdae2b
 
 
 
 
 
 
 
 
7edab87
 
 
 
 
 
 
 
 
2c1e3dd
 
 
 
 
 
 
3aa9d74
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import streamlit as st
import pandas as pd


st.title('AppMap')
st.markdown('This is a simple app to help you visualize your app\'s data.')
st.markdown('**Note:** This app is still in development. Please report any bugs or suggestions to [@napoles3D](https://twitter.com/napoles3D)')


filepath = 'https://raw.githubusercontent.com/napoles-uach/Pycon_cl_taller/main/meteorite-landings.csv'

@st.cache
def read_csv(file_path):
    df = pd.read_csv(file_path)
    return df

df = read_csv(filepath)

st.button('test')

df=df[(df['mass']>0 )] #evitar algunos valores incompletos
df=df[abs(df['lat'])>0]  #evitar algunos valores incompletos

year_min=int(df['year'].min()) #identificamos el valor mínimo
year_max=int(df['year'].max()) #identificamos el valor máximo
cols=list(df.columns) # lista con nombres de columnas en el csv

# separamos en columnas
col1,col2,col3 = st.columns([5,1,5])

with col1.expander('widgets'):
    year_range = st.slider('year range',year_min,year_max,[1800,1900],step=10)
    vals=st.multiselect('',cols)
    
    
    df1=df[(df['year']>=year_range[0] ) & (df['year']<=year_range[1] )]
df2=df1[vals]

with col1.expander('data'):
    st.dataframe(df2)