Spaces:
Running
Running
File size: 26,208 Bytes
73e6a9f 73c9dc8 dcb0521 73c9dc8 12c4d09 dcb0521 73c9dc8 918ef2d 73c9dc8 cf9bca8 73c9dc8 cf9bca8 dcb0521 cf9bca8 73c9dc8 cf9bca8 dcb0521 cf9bca8 73c9dc8 cf9bca8 73c9dc8 dcb0521 73c9dc8 918ef2d 73c9dc8 918ef2d 73c9dc8 daaa3ac 73c9dc8 12c4d09 daaa3ac 73c9dc8 dcb0521 12c4d09 73c9dc8 dcb0521 73c9dc8 dcb0521 918ef2d dcb0521 12c4d09 73c9dc8 dcb0521 918ef2d 73c9dc8 cf9bca8 73c9dc8 cf9bca8 73c9dc8 cf9bca8 73c9dc8 b43f45b d2ffab4 daba275 918ef2d 73c9dc8 dcb0521 73c9dc8 dcb0521 73c9dc8 dcb0521 73c9dc8 dcb0521 73c9dc8 dcb0521 73c9dc8 dcb0521 73c9dc8 dcb0521 73c9dc8 dcb0521 73c9dc8 dcb0521 02c190e 73c9dc8 daaa3ac 61f8fb4 73c9dc8 d2ffab4 73c9dc8 02c190e 73c9dc8 02c190e 918ef2d 02c190e 918ef2d daaa3ac dcb0521 daaa3ac 918ef2d daaa3ac 73c9dc8 aa20739 73c9dc8 0693550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
print("Starting up. Please be patient...")
import os
import glob
import json
import traceback
import logging
import gradio as gr
import numpy as np
import librosa
import torch
import asyncio
import edge_tts
import yt_dlp
import ffmpeg
import subprocess
import sys
import io
import wave
from datetime import datetime
from fairseq import checkpoint_utils
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from vc_infer_pipeline import VC
from config import Config
from edgetts_db import tts_order_voice
config = Config()
logging.getLogger("numba").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"
#limitation=True
language_dict = tts_order_voice
authors = ["dacoolkid44", "Hijack", "Maki Ligon", "megaaziib", "KitLemonfoot", "yeey5", "Sui", "MahdeenSky"]
audio_mode = []
f0method_mode = []
if limitation is True:
f0method_info = "PM is better for testing, RMVPE is better for finalized generations. (Default: RMVPE)"
audio_mode = ["Edge-TTS", "Upload audio", "Record Audio"]
f0method_mode = ["pm", "rmvpe"]
else:
f0method_info = "PM is fast but low quality, crepe and harvest are slow but good quality, RMVPE is the best of both worlds. (Default: RMVPE)"
audio_mode = ["Edge-TTS", "Youtube", "Upload audio", "Record Audio"]
f0method_mode = ["pm", "crepe", "harvest", "rmvpe"]
#if os.path.isfile("rmvpe.pt"):
# f0method_mode.append("rmvpe")
#Eagerload VCs
print("Preloading VCs...")
vcArr=[]
vcArr.append(VC(32000, config))
vcArr.append(VC(40000, config))
vcArr.append(VC(48000, config))
def infer(name, path, index, vc_audio_mode, vc_input, vc_upload, tts_text, tts_voice, f0_up_key, f0_method, index_rate, filter_radius, resample_sr, rms_mix_rate, protect, record_button):
try:
#Setup audio
audio=None
if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
audio, sr = librosa.load(vc_input, sr=16000, mono=True)
tts_text = "YouTube Audio"
elif vc_audio_mode == "Upload audio":
if vc_upload is None:
return "Please upload an audio file.", None
sampling_rate, audio = vc_upload
duration = audio.shape[0] / sampling_rate
if duration > 60 and limitation:
return "Too long! Please upload an audio file that is less than 1 minute.", None
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
tts_text = "Uploaded Audio"
elif vc_audio_mode == "Edge-TTS":
if len(tts_text) > 250 and limitation:
return "Text is too long.", None
if tts_text is None or tts_voice is None or tts_text=="":
return "You need to enter text and select a voice.", None
voice = language_dict[tts_voice]
try:
asyncio.run(edge_tts.Communicate(tts_text, voice).save("tts.mp3"))
except:
print("Failed to get E-TTS handle. A restart may be needed soon.")
return "ERROR: Failed to communicate with Edge-TTS. The Edge-TTS service may be down or cannot communicate. Please try another method or try again later.", None
try:
audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
except:
return "ERROR: Invalid characters for the chosen TTS speaker. (Change your TTS speaker to one that supports your language!)", None
duration = audio.shape[0] / sr
if duration > 30 and limitation:
return "Your text generated an audio that was too long.", None
vc_input = "tts.mp3"
elif vc_audio_mode == "Record Audio":
if record_button is None:
return "Please record some audio.", None
sampling_rate, audio = record_button
duration = audio.shape[0] / sampling_rate
if duration > 60 and limitation:
return "Too long! Please record an audio file that is less than 1 minute.", None
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
tts_text = "Recorded Audio"
if audio is None:
if vc_audio_mode == "Edge-TTS":
print("Failed to get E-TTS handle. A restart may be needed soon.")
return "ERROR: Failed to obtain a correct response from Edge-TTS. The Edge-TTS service may be down or unable to communicate. Please try another method or try again later.", None
return "ERROR: Unknown audio error. Please try again.", None
times = [0, 0, 0]
f0_up_key = int(f0_up_key)
#Setup model
cpt = torch.load(f"{path}", map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
model_version = "V1"
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
model_version = "V2"
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vcIdx = int((tgt_sr/8000)-4)
#Gen audio
audio_opt = vcArr[vcIdx].pipeline(
hubert_model,
net_g,
0,
audio,
vc_input,
times,
f0_up_key,
f0_method,
index,
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=None,
)
info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
print(f"Successful inference with model {name} | {tts_text} | {info}")
del net_g, cpt
return info, (tgt_sr, audio_opt)
except:
info = traceback.format_exc()
print(info)
return info, (None, None)
def load_model():
categories = []
with open("weights/folder_info.json", "r", encoding="utf-8") as f:
folder_info = json.load(f)
for category_name, category_info in folder_info.items():
if not category_info['enable']:
continue
category_title = category_info['title']
category_folder = category_info['folder_path']
models = []
print(f"Creating category {category_title}...")
with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
for character_name, info in models_info.items():
if not info['enable']:
continue
model_title = info['title']
model_name = info['model_path']
model_author = info.get("author", None)
model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
if info['feature_retrieval_library'] == "None":
model_index = None
if model_index:
assert os.path.exists(model_index), f"Model {model_title} failed to load index."
if not (model_author in authors or "/" in model_author or "&" in model_author):
authors.append(model_author)
model_path = f"weights/{category_folder}/{character_name}/{model_name}"
cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
model_version = cpt.get("version", "v1")
print(f"Indexed model {model_title} by {model_author} ({model_version})")
models.append((character_name, model_title, model_author, model_cover, model_version, model_path, model_index))
del cpt
categories.append([category_title, category_folder, models])
return categories
def cut_vocal_and_inst(url, audio_provider, split_model):
if url != "":
if not os.path.exists("dl_audio"):
os.mkdir("dl_audio")
if audio_provider == "Youtube":
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
"outtmpl": 'dl_audio/youtube_audio',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
audio_path = "dl_audio/youtube_audio.wav"
else:
# Spotify doesnt work.
# Need to find other solution soon.
'''
command = f"spotdl download {url} --output dl_audio/.wav"
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
print(result.stdout.decode())
audio_path = "dl_audio/spotify_audio.wav"
'''
if split_model == "htdemucs":
command = f"demucs --two-stems=vocals {audio_path} -o output"
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
print(result.stdout.decode())
return "output/htdemucs/youtube_audio/vocals.wav", "output/htdemucs/youtube_audio/no_vocals.wav", audio_path, "output/htdemucs/youtube_audio/vocals.wav"
else:
command = f"demucs --two-stems=vocals -n mdx_extra_q {audio_path} -o output"
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
print(result.stdout.decode())
return "output/mdx_extra_q/youtube_audio/vocals.wav", "output/mdx_extra_q/youtube_audio/no_vocals.wav", audio_path, "output/mdx_extra_q/youtube_audio/vocals.wav"
else:
raise gr.Error("URL Required!")
return None, None, None, None
def combine_vocal_and_inst(audio_data, audio_volume, split_model):
if not os.path.exists("output/result"):
os.mkdir("output/result")
vocal_path = "output/result/output.wav"
output_path = "output/result/combine.mp3"
if split_model == "htdemucs":
inst_path = "output/htdemucs/youtube_audio/no_vocals.wav"
else:
inst_path = "output/mdx_extra_q/youtube_audio/no_vocals.wav"
with wave.open(vocal_path, "w") as wave_file:
wave_file.setnchannels(1)
wave_file.setsampwidth(2)
wave_file.setframerate(audio_data[0])
wave_file.writeframes(audio_data[1].tobytes())
command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
print(result.stdout.decode())
return output_path
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
def change_audio_mode(vc_audio_mode):
if vc_audio_mode == "Input path":
return (
# Input & Upload
gr.Textbox.update(visible=True),
gr.Audio.update(visible=False),
# Youtube
gr.Dropdown.update(visible=False),
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False),
gr.Button.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
# EdgeTTS
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False),
# Record Own
gr.Audio.update(visible=False)
)
elif vc_audio_mode == "Upload audio":
return (
# Input & Upload
gr.Textbox.update(visible=False),
gr.Audio.update(visible=True),
# Youtube
gr.Dropdown.update(visible=False),
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False),
gr.Button.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
# EdgeTTS
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False),
# Record Own
gr.Audio.update(visible=False)
)
elif vc_audio_mode == "Youtube":
return (
# Input & Upload
gr.Textbox.update(visible=False),
gr.Audio.update(visible=False),
# Youtube
gr.Dropdown.update(visible=True),
gr.Textbox.update(visible=True),
gr.Dropdown.update(visible=True),
gr.Button.update(visible=True),
gr.Audio.update(visible=True),
gr.Audio.update(visible=True),
gr.Audio.update(visible=True),
# TTS
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False),
# Record Own
gr.Audio.update(visible=False)
)
elif vc_audio_mode == "Edge-TTS":
return (
# Input & Upload
gr.Textbox.update(visible=False),
gr.Audio.update(visible=False),
# Youtube
gr.Dropdown.update(visible=False),
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False),
gr.Button.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
# TTS
gr.Textbox.update(visible=True),
gr.Dropdown.update(visible=True),
# Record Own
gr.Audio.update(visible=False)
)
elif vc_audio_mode == "Record Audio":
return (
# Input & Upload
gr.Textbox.update(visible=False),
gr.Audio.update(visible=False),
# Youtube
gr.Dropdown.update(visible=False),
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False),
gr.Button.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
# TTS
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False),
# Record Own
gr.Audio.update(visible=True)
)
else:
return (
# Input & Upload
gr.Textbox.update(visible=False),
gr.Audio.update(visible=True),
# Youtube
gr.Dropdown.update(visible=False),
gr.Textbox.update(visible=False),
gr.Dropdown.update(visible=False),
gr.Button.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
gr.Audio.update(visible=False),
# TTS
gr.Textbox.update(visible=False, interactive=True),
gr.Dropdown.update(visible=False, interactive=True),
# Record Own
gr.Audio.update(visible=False)
)
if __name__ == '__main__':
load_hubert()
categories = load_model()
voices = list(language_dict.keys())
#Gradio preloading
vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Edge-TTS")
# Input and Upload
vc_input = gr.Textbox(label="Input audio path", visible=False)
vc_upload = gr.Audio(label="Upload audio file", visible=False, interactive=True)
# Youtube
vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
vc_split_model = gr.Dropdown(label="Splitter Model", choices=["htdemucs", "mdx_extra_q"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
vc_split = gr.Button("Split Audio", variant="primary", visible=False)
vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
# TTS
tts_text = gr.Textbox(visible=True, label="TTS text", info="Text to speech input (There is a limit of 250 characters)", interactive=True)
tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=True, allow_custom_value=False, value="English-Ana (Female)", interactive=True)
# Record Own
record_button = gr.Audio(source="microphone", label="Record your own audio", visible=False, interactive=True)
vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
f0method0 = gr.Radio(
label="Pitch extraction algorithm",
info=f0method_info,
choices=f0method_mode,
value="pm",
interactive=True
)
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label="Retrieval feature ratio",
info="Accent control. Too high will usually sound too robotic. (Default: 0.4)",
value=0.4,
interactive=True,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label="Apply Median Filtering",
info="The value represents the filter radius and can reduce breathiness.",
value=1,
step=1,
interactive=True,
)
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label="Resample the output audio",
info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling.",
value=0,
step=1,
interactive=True,
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label="Volume Envelope",
info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
value=1,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label="Voice Protection",
info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
value=0.23,
step=0.01,
interactive=True,
)
with gr.Blocks(theme=gr.themes.Base()) as app:
gr.Markdown(
"# <center> VTuber RVC Models\n"
"### <center> Space by Kit Lemonfoot / Noel Shirogane's High Flying Birds"
"<center> Original space by megaaziib & zomehwh\n"
"### <center> Please credit the original model authors if you use this Space."
"<center>Do no evil.\n\n"
"[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Til3SY7-X0x3Wss3YXlgfq8go39DzWHk)\n\n"
)
gr.Markdown("<center> Looking for more models? <a href=\"https://docs.google.com/spreadsheets/d/1tvZSggOsZGAPjbMrWOAAaoJJFpJuQlwUEQCf5x1ssO8\">Check out the VTuber AI Model Tracking spreadsheet!</a>")
for (folder_title, folder, models) in categories:
with gr.TabItem(folder_title):
with gr.Tabs():
if not models:
gr.Markdown("# <center> No Model Loaded.")
gr.Markdown("## <center> Please add model or fix your model path.")
continue
for (name, title, author, cover, model_version, model_path, model_index) in models:
with gr.TabItem(name):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<div>{title}</div>\n'+
f'<div>RVC {model_version} Model</div>\n'+
(f'<div>Model author: {author}</div>' if author else "")+
(f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
'</div>'
)
with gr.Column():
vc_log = gr.Textbox(label="Output Information", interactive=False)
vc_output = gr.Audio(label="Output Audio", interactive=False)
#This is a fucking stupid solution but Gradio refuses to pass in values unless I do this.
vc_name = gr.Textbox(value=title, visible=False, interactive=False)
vc_mp = gr.Textbox(value=model_path, visible=False, interactive=False)
vc_mi = gr.Textbox(value=model_index, visible=False, interactive=False)
vc_convert = gr.Button("Convert", variant="primary")
vc_convert.click(
fn=infer,
inputs=[
vc_name,
vc_mp,
vc_mi,
vc_audio_mode,
vc_input,
vc_upload,
tts_text,
tts_voice,
vc_transform0,
f0method0,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
record_button
],
outputs=[vc_log, vc_output]
)
with gr.Row():
with gr.Column():
vc_audio_mode.render()
vc_input.render()
vc_upload.render()
# Youtube
vc_download_audio.render()
vc_link.render()
vc_split_model.render()
vc_split.render()
vc_vocal_preview.render()
vc_inst_preview.render()
vc_audio_preview.render()
# TTS
tts_text.render()
tts_voice.render()
# Record Own
record_button.render()
with gr.Column():
vc_transform0.render()
f0method0.render()
index_rate1.render()
with gr.Accordion("Advanced Options", open=False):
filter_radius0.render()
resample_sr0.render()
rms_mix_rate0.render()
protect0.render()
vc_split.click(
fn=cut_vocal_and_inst,
inputs=[vc_link, vc_download_audio, vc_split_model],
outputs=[vc_vocal_preview, vc_inst_preview, vc_audio_preview, vc_input]
)
vc_audio_mode.change(
fn=change_audio_mode,
inputs=[vc_audio_mode],
outputs=[
vc_input,
vc_upload,
vc_download_audio,
vc_link,
vc_split_model,
vc_split,
vc_vocal_preview,
vc_inst_preview,
vc_audio_preview,
tts_text,
tts_voice,
record_button
]
)
authStr=", ".join(authors)
gr.Markdown(
"## <center>Credit to:\n"
"#### <center>Original devs:\n"
"<center>the RVC Project, lj1995, zomehwh, sysf\n\n"
"#### <center>Model creators:\n"
f"<center>{authStr}\n"
)
if limitation is True:
app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)
else:
app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=True)
|