File size: 17,526 Bytes
78b6bf0
 
 
 
 
6de3522
78b6bf0
 
 
 
 
 
 
 
 
 
 
 
b5bac24
78b6bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5bac24
78b6bf0
 
b5bac24
 
78b6bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5bac24
 
78b6bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
b5bac24
78b6bf0
b5bac24
 
 
 
 
 
 
ef0e26b
78b6bf0
b5bac24
78b6bf0
6de3522
 
78b6bf0
b5bac24
 
 
 
 
78b6bf0
 
 
 
 
b5bac24
78b6bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6de3522
78b6bf0
 
6de3522
 
 
 
 
 
 
 
 
 
 
 
 
 
446d837
6de3522
 
 
 
 
 
 
 
78b6bf0
 
b5bac24
6de3522
 
b5bac24
78b6bf0
b5bac24
ef73374
78b6bf0
 
 
b5bac24
 
 
 
 
78b6bf0
 
 
 
b5bac24
78b6bf0
 
 
b5bac24
78b6bf0
 
 
b5bac24
78b6bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5bac24
78b6bf0
 
 
b5bac24
78b6bf0
446cc82
78b6bf0
6de3522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b6bf0
b5bac24
78b6bf0
6de3522
 
 
 
 
 
78b6bf0
6de3522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b6bf0
6de3522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b6bf0
 
6de3522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import argparse
import datetime
import os
import sys
import warnings
import json

import gradio as gr
import numpy as np
import torch
from gradio.processing_utils import convert_to_16_bit_wav

import utils
from config import config
from infer import get_net_g, infer
from tools.log import logger

is_hf_spaces = os.getenv("SYSTEM") == "spaces"
limit = 150


class Model:
    def __init__(self, model_path, config_path, style_vec_path, device):
        self.model_path = model_path
        self.config_path = config_path
        self.device = device
        self.style_vec_path = style_vec_path
        self.load()

    def load(self):
        self.hps = utils.get_hparams_from_file(self.config_path)
        self.spk2id = self.hps.data.spk2id
        self.num_styles = self.hps.data.num_styles
        if hasattr(self.hps.data, "style2id"):
            self.style2id = self.hps.data.style2id
        else:
            self.style2id = {str(i): i for i in range(self.num_styles)}

        self.style_vectors = np.load(self.style_vec_path)
        self.net_g = None

    def load_net_g(self):
        self.net_g = get_net_g(
            model_path=self.model_path,
            version=self.hps.version,
            device=self.device,
            hps=self.hps,
        )

    def get_style_vector(self, style_id, weight=1.0):
        mean = self.style_vectors[0]
        style_vec = self.style_vectors[style_id]
        style_vec = mean + (style_vec - mean) * weight
        return style_vec

    def get_style_vector_from_audio(self, audio_path, weight=1.0):
        from style_gen import extract_style_vector

        xvec = extract_style_vector(audio_path)
        mean = self.style_vectors[0]
        xvec = mean + (xvec - mean) * weight
        return xvec

    def infer(
        self,
        text,
        language="JP",
        sid=0,
        reference_audio_path=None,
        sdp_ratio=0.2,
        noise=0.6,
        noisew=0.8,
        length=1.0,
        line_split=True,
        split_interval=0.2,
        style_text="",
        style_weight=0.7,
        use_style_text=False,
        style="0",
        emotion_weight=1.0,
    ):
        if reference_audio_path == "":
            reference_audio_path = None
        if style_text == "" or not use_style_text:
            style_text = None

        if self.net_g is None:
            self.load_net_g()
        if reference_audio_path is None:
            style_id = self.style2id[style]
            style_vector = self.get_style_vector(style_id, emotion_weight)
        else:
            style_vector = self.get_style_vector_from_audio(
                reference_audio_path, emotion_weight
            )
        if not line_split:
            with torch.no_grad():
                audio = infer(
                    text=text,
                    sdp_ratio=sdp_ratio,
                    noise_scale=noise,
                    noise_scale_w=noisew,
                    length_scale=length,
                    sid=sid,
                    language=language,
                    hps=self.hps,
                    net_g=self.net_g,
                    device=self.device,
                    style_text=style_text,
                    style_weight=style_weight,
                    style_vec=style_vector,
                )
        else:
            texts = text.split("\n")
            texts = [t for t in texts if t != ""]
            audios = []
            with torch.no_grad():
                for i, t in enumerate(texts):
                    audios.append(
                        infer(
                            text=t,
                            sdp_ratio=sdp_ratio,
                            noise_scale=noise,
                            noise_scale_w=noisew,
                            length_scale=length,
                            sid=sid,
                            language=language,
                            hps=self.hps,
                            net_g=self.net_g,
                            device=self.device,
                            style_text=style_text,
                            style_weight=style_weight,
                            style_vec=style_vector,
                        )
                    )
                    if i != len(texts) - 1:
                        audios.append(np.zeros(int(44100 * split_interval)))
                audio = np.concatenate(audios)
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                audio = convert_to_16_bit_wav(audio)
        return (self.hps.data.sampling_rate, audio)


class ModelHolder:
    def __init__(self, root_dir, device):
        self.root_dir = root_dir
        self.device = device
        self.model_files_dict = {}
        self.current_model = None
        self.model_names = []
        self.models = []
        self.refresh()

    def refresh(self):
        self.model_files_dict = {}
        self.model_names = []
        self.current_model = None
        model_dirs = [
            d
            for d in os.listdir(self.root_dir)
            if os.path.isdir(os.path.join(self.root_dir, d))
        ]
        for model_name in model_dirs:
            model_dir = os.path.join(self.root_dir, model_name)
            model_files = [
                os.path.join(model_dir, f)
                for f in os.listdir(model_dir)
                if f.endswith(".pth") or f.endswith(".pt") or f.endswith(".safetensors")
            ]
            if len(model_files) == 0:
                logger.info(
                    f"No model files found in {self.root_dir}/{model_name}, so skip it"
                )
            self.model_files_dict[model_name] = model_files
            self.model_names.append(model_name)

    def load_model(self, model_name, model_path):
        if model_name not in self.model_files_dict:
            raise Exception(f"モデル名{model_name}は存在しません")
        if model_path not in self.model_files_dict[model_name]:
            raise Exception(f"pthファイル{model_path}は存在しません")
        self.current_model = Model(
            model_path=model_path,
            config_path=os.path.join(self.root_dir, model_name, "config.json"),
            style_vec_path=os.path.join(self.root_dir, model_name, "style_vectors.npy"),
            device=self.device,
        )
        styles = list(self.current_model.style2id.keys())
        speakers = list(self.current_model.spk2id.keys())
        return (
            gr.Dropdown(choices=styles, value=styles[0]),
            gr.update(interactive=True, value="Synthesize"),
            gr.Dropdown(choices=speakers, value=speakers[0]),
        )

    def update_model_files_dropdown(self, model_name):
        model_files = self.model_files_dict[model_name]
        return gr.Dropdown(choices=model_files, value=model_files[0])

    def update_model_names_dropdown(self):
        self.refresh()
        initial_model_name = self.model_names[0]
        initial_model_files = self.model_files_dict[initial_model_name]
        return (
            gr.Dropdown(choices=self.model_names, value=initial_model_name),
            gr.Dropdown(choices=initial_model_files, value=initial_model_files[0]),
            gr.update(interactive=False),  # For tts_button
        )


def tts_fn(
    model_name,
    model_path,
    text,
    language,
    reference_audio_path,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    line_split,
    split_interval,
    style_text,
    style_weight,
    use_style_text,
    emotion,
    emotion_weight,
    speaker,
):
    if not text:
        return "Please enter some text.", (44100, None)
    #logger.info(f"Start TTS with {language}:\n{text}")
    #logger.info(f"Model: {model_holder.current_model.model_path}")
    #logger.info(f"SDP: {sdp_ratio}, Noise: {noise_scale}, Noise_W: {noise_scale_w}, Length: {length_scale}")
    #logger.info(f"Style text enabled: {use_style_text}, Style text: {style_text}, Style weight: {style_weight}")
    #logger.info(f"Style: {emotion}, Style weight: {emotion_weight}")
    
    if is_hf_spaces and len(text) > limit:
        return f"Too long! There is a character limit of {limit} characters.", (44100, None)

    if(not model_holder.current_model):
        model_holder.load_model(model_name, model_path)

    if(model_holder.current_model.model_path != model_path):
        model_holder.load_model(model_name, model_path)
    
    speaker_id = model_holder.current_model.spk2id[speaker]

    start_time = datetime.datetime.now()

    sr, audio = model_holder.current_model.infer(
        text=text,
        language=language,
        sid=speaker_id,
        reference_audio_path=reference_audio_path,
        sdp_ratio=sdp_ratio,
        noise=noise_scale,
        noisew=noise_scale_w,
        length=length_scale,
        line_split=line_split,
        split_interval=split_interval,
        style_text=style_text,
        style_weight=style_weight,
        use_style_text=use_style_text,
        style=emotion,
        emotion_weight=emotion_weight,
    )

    end_time = datetime.datetime.now()
    duration = (end_time - start_time).total_seconds()
    logger.info(f"Successful inference, took {duration}s | {speaker} | {sdp_ratio}/{noise_scale}/{noise_scale_w}/{length_scale}/{emotion}/{emotion_weight} | {text}")
    return f"Success, time: {duration} seconds.", (sr, audio)

def load_voicedata():
    logger.info("Loading voice data...")
    voices = []
    styledict = {}
    with open("voicelist.json", "r", encoding="utf-8") as f:
        voc_info = json.load(f)
    for name, info in voc_info.items():
        if not info['enable']:
            continue
        model_path = info['model_path']
        voice_name = info['title']
        speakerid = info['speakerid']
        image = info['cover']
        if not model_path in styledict.keys():
           conf=f"model_assets/{model_path}/config.json"
           hps = utils.get_hparams_from_file(conf)
           s2id = hps.data.style2id
           styledict[model_path] = s2id.keys()
        voices.append((name, model_path, voice_name, speakerid, image))
    return voices, styledict
        

initial_text = "Hello there! This is test audio of Lemonfoot S B V 2."

initial_md = """
# LemonfootSBV2 😊🍋
### Space by [Kit Lemonfoot](https://huggingface.co/Kit-Lemonfoot)/[Noel Shirogane's High Flying Birds](https://www.youtube.com/channel/UCG9A0OJsJTluLOXfMZjJ9xA)
### Based on code originally by [fishaudio](https://github.com/fishaudio) and [litagin02](https://github.com/litagin02)
This HuggingFace space is designed to demonstrate multiple experimental [Style-Bert-VITS2](https://github.com/litagin02/Style-Bert-VITS2) models made by Kit Lemonfoot.

Do no evil.

"""

style_md = """
- You can control things like voice tone, emotion, and reading style through presets or through voice files.
- Neutral acts as an average across all speakers. Styling options act as an override to Neutral.
- Setting the intensity too high will likely break the output.
- The required intensity will depend based on the speaker and the desired style.
- If you're using preexisting audio data to style the output, try to use a voice that is similar to the desired speaker.
"""


def make_interactive():
    return gr.update(interactive=True, value="Synthesize")


def make_non_interactive():
    return gr.update(interactive=False, value="Synthesize (Please load a model!)")


def gr_util(item):
    if item == "Select from presets":
        return (gr.update(visible=True), gr.Audio(visible=False, value=None))
    else:
        return (gr.update(visible=False), gr.update(visible=True))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU")
    parser.add_argument(
        "--dir", "-d", type=str, help="Model directory", default=config.out_dir
    )
    args = parser.parse_args()
    model_dir = args.dir

    if args.cpu:
        device = "cpu"
    else:
        device = "cuda" if torch.cuda.is_available() else "cpu"

    model_holder = ModelHolder(model_dir, device)

    languages = ["EN", "JP", "ZH"]

    model_names = model_holder.model_names
    if len(model_names) == 0:
        logger.error(f"No models found. Please place the model in {model_dir}.")
        sys.exit(1)
    initial_id = 0
    initial_pth_files = model_holder.model_files_dict[model_names[initial_id]]
    print(initial_pth_files)

    voicedata, styledict = load_voicedata()

    #Gradio preload
    text_input = gr.TextArea(label="Text", value=initial_text)
    line_split = gr.Checkbox(label="Divide text seperately by line breaks", value=True)
    split_interval = gr.Slider(
        minimum=0.0,
        maximum=2,
        value=0.5,
        step=0.1,
        label="Length of division seperation time (in seconds)",
    )
    language = gr.Dropdown(choices=languages, value="EN", label="Language")
    sdp_ratio = gr.Slider(
        minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
    )
    noise_scale = gr.Slider(
        minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise"
    )
    noise_scale_w = gr.Slider(
        minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise_W"
    )
    length_scale = gr.Slider(
        minimum=0.1, maximum=2, value=1.0, step=0.1, label="Length"
    )
    use_style_text = gr.Checkbox(label="Use stylization text", value=False)
    style_text = gr.Textbox(
        label="Style text",
        placeholder="Check the \"Use styleization text\" box to use this option!",
        info="The voice will be similar in tone and emotion to the text, however inflection and tempo may be worse as a result.",
        visible=True,
    )
    style_text_weight = gr.Slider(
        minimum=0,
        maximum=1,
        value=0.7,
        step=0.1,
        label="Text stylization strength",
        visible=True,
    )
    

    with gr.Blocks(theme=gr.themes.Base(primary_hue="emerald", secondary_hue="green"), title="LemonfootSBV2") as app:
        gr.Markdown(initial_md)

        for (name, model_path, voice_name, speakerid, image) in voicedata:
            with gr.TabItem(name):
                mn = gr.Textbox(value=model_path, visible=False, interactive=False)
                mp = gr.Textbox(value=f"model_assets\\{model_path}\\{model_path}.safetensors", visible=False, interactive=False)
                spk = gr.Textbox(value=speakerid, visible=False, interactive=False)
                with gr.Row():
                    with gr.Column():
                        gr.Markdown(f"**{voice_name}**\n\nModel name: {model_path}")
                        gr.Image(f"images/{image}", label=None, show_label=False, width=300, show_download_button=False, container=False)
                    with gr.Column():
                        with gr.TabItem("Preset Styles"):
                            style = gr.Dropdown(
                                label="Current style (Neutral is an average style)",
                                choices=styledict[model_path],
                                value="Neutral",
                            )
                        with gr.TabItem("Use an audio file"):
                            ref_audio_path = gr.Audio(label="Reference Audio", type="filepath")
                        style_weight = gr.Slider(
                            minimum=0,
                            maximum=50,
                            value=5,
                            step=0.1,
                            label="Style strength",
                        )
                    with gr.Column():
                        tts_button = gr.Button(
                            "Synthesize", variant="primary", interactive=True
                        )
                        text_output = gr.Textbox(label="Info")
                        audio_output = gr.Audio(label="Result")

                        tts_button.click(
                            tts_fn,
                            inputs=[
                                mn,
                                mp,
                                text_input,
                                language,
                                ref_audio_path,
                                sdp_ratio,
                                noise_scale,
                                noise_scale_w,
                                length_scale,
                                line_split,
                                split_interval,
                                style_text,
                                style_text_weight,
                                use_style_text,
                                style,
                                style_weight,
                                spk,
                            ],
                            outputs=[text_output, audio_output],
                        )

        with gr.Row():
            with gr.Column():
                text_input.render()
                line_split.render()
                split_interval.render()
                language.render()
            with gr.Column():
                sdp_ratio.render()
                noise_scale.render()
                noise_scale_w.render()
                length_scale.render()
                use_style_text.render()
                style_text.render()
                style_text_weight.render()

        with gr.Accordion("Styling Guide", open=False):
            gr.Markdown(style_md)

    app.launch(allowed_paths=['/file/images/'])