File size: 17,526 Bytes
78b6bf0 6de3522 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 b5bac24 ef0e26b 78b6bf0 b5bac24 78b6bf0 6de3522 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 6de3522 78b6bf0 6de3522 446d837 6de3522 78b6bf0 b5bac24 6de3522 b5bac24 78b6bf0 b5bac24 ef73374 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 b5bac24 78b6bf0 446cc82 78b6bf0 6de3522 78b6bf0 b5bac24 78b6bf0 6de3522 78b6bf0 6de3522 78b6bf0 6de3522 78b6bf0 6de3522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import argparse
import datetime
import os
import sys
import warnings
import json
import gradio as gr
import numpy as np
import torch
from gradio.processing_utils import convert_to_16_bit_wav
import utils
from config import config
from infer import get_net_g, infer
from tools.log import logger
is_hf_spaces = os.getenv("SYSTEM") == "spaces"
limit = 150
class Model:
def __init__(self, model_path, config_path, style_vec_path, device):
self.model_path = model_path
self.config_path = config_path
self.device = device
self.style_vec_path = style_vec_path
self.load()
def load(self):
self.hps = utils.get_hparams_from_file(self.config_path)
self.spk2id = self.hps.data.spk2id
self.num_styles = self.hps.data.num_styles
if hasattr(self.hps.data, "style2id"):
self.style2id = self.hps.data.style2id
else:
self.style2id = {str(i): i for i in range(self.num_styles)}
self.style_vectors = np.load(self.style_vec_path)
self.net_g = None
def load_net_g(self):
self.net_g = get_net_g(
model_path=self.model_path,
version=self.hps.version,
device=self.device,
hps=self.hps,
)
def get_style_vector(self, style_id, weight=1.0):
mean = self.style_vectors[0]
style_vec = self.style_vectors[style_id]
style_vec = mean + (style_vec - mean) * weight
return style_vec
def get_style_vector_from_audio(self, audio_path, weight=1.0):
from style_gen import extract_style_vector
xvec = extract_style_vector(audio_path)
mean = self.style_vectors[0]
xvec = mean + (xvec - mean) * weight
return xvec
def infer(
self,
text,
language="JP",
sid=0,
reference_audio_path=None,
sdp_ratio=0.2,
noise=0.6,
noisew=0.8,
length=1.0,
line_split=True,
split_interval=0.2,
style_text="",
style_weight=0.7,
use_style_text=False,
style="0",
emotion_weight=1.0,
):
if reference_audio_path == "":
reference_audio_path = None
if style_text == "" or not use_style_text:
style_text = None
if self.net_g is None:
self.load_net_g()
if reference_audio_path is None:
style_id = self.style2id[style]
style_vector = self.get_style_vector(style_id, emotion_weight)
else:
style_vector = self.get_style_vector_from_audio(
reference_audio_path, emotion_weight
)
if not line_split:
with torch.no_grad():
audio = infer(
text=text,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=sid,
language=language,
hps=self.hps,
net_g=self.net_g,
device=self.device,
style_text=style_text,
style_weight=style_weight,
style_vec=style_vector,
)
else:
texts = text.split("\n")
texts = [t for t in texts if t != ""]
audios = []
with torch.no_grad():
for i, t in enumerate(texts):
audios.append(
infer(
text=t,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=sid,
language=language,
hps=self.hps,
net_g=self.net_g,
device=self.device,
style_text=style_text,
style_weight=style_weight,
style_vec=style_vector,
)
)
if i != len(texts) - 1:
audios.append(np.zeros(int(44100 * split_interval)))
audio = np.concatenate(audios)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
audio = convert_to_16_bit_wav(audio)
return (self.hps.data.sampling_rate, audio)
class ModelHolder:
def __init__(self, root_dir, device):
self.root_dir = root_dir
self.device = device
self.model_files_dict = {}
self.current_model = None
self.model_names = []
self.models = []
self.refresh()
def refresh(self):
self.model_files_dict = {}
self.model_names = []
self.current_model = None
model_dirs = [
d
for d in os.listdir(self.root_dir)
if os.path.isdir(os.path.join(self.root_dir, d))
]
for model_name in model_dirs:
model_dir = os.path.join(self.root_dir, model_name)
model_files = [
os.path.join(model_dir, f)
for f in os.listdir(model_dir)
if f.endswith(".pth") or f.endswith(".pt") or f.endswith(".safetensors")
]
if len(model_files) == 0:
logger.info(
f"No model files found in {self.root_dir}/{model_name}, so skip it"
)
self.model_files_dict[model_name] = model_files
self.model_names.append(model_name)
def load_model(self, model_name, model_path):
if model_name not in self.model_files_dict:
raise Exception(f"モデル名{model_name}は存在しません")
if model_path not in self.model_files_dict[model_name]:
raise Exception(f"pthファイル{model_path}は存在しません")
self.current_model = Model(
model_path=model_path,
config_path=os.path.join(self.root_dir, model_name, "config.json"),
style_vec_path=os.path.join(self.root_dir, model_name, "style_vectors.npy"),
device=self.device,
)
styles = list(self.current_model.style2id.keys())
speakers = list(self.current_model.spk2id.keys())
return (
gr.Dropdown(choices=styles, value=styles[0]),
gr.update(interactive=True, value="Synthesize"),
gr.Dropdown(choices=speakers, value=speakers[0]),
)
def update_model_files_dropdown(self, model_name):
model_files = self.model_files_dict[model_name]
return gr.Dropdown(choices=model_files, value=model_files[0])
def update_model_names_dropdown(self):
self.refresh()
initial_model_name = self.model_names[0]
initial_model_files = self.model_files_dict[initial_model_name]
return (
gr.Dropdown(choices=self.model_names, value=initial_model_name),
gr.Dropdown(choices=initial_model_files, value=initial_model_files[0]),
gr.update(interactive=False), # For tts_button
)
def tts_fn(
model_name,
model_path,
text,
language,
reference_audio_path,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
line_split,
split_interval,
style_text,
style_weight,
use_style_text,
emotion,
emotion_weight,
speaker,
):
if not text:
return "Please enter some text.", (44100, None)
#logger.info(f"Start TTS with {language}:\n{text}")
#logger.info(f"Model: {model_holder.current_model.model_path}")
#logger.info(f"SDP: {sdp_ratio}, Noise: {noise_scale}, Noise_W: {noise_scale_w}, Length: {length_scale}")
#logger.info(f"Style text enabled: {use_style_text}, Style text: {style_text}, Style weight: {style_weight}")
#logger.info(f"Style: {emotion}, Style weight: {emotion_weight}")
if is_hf_spaces and len(text) > limit:
return f"Too long! There is a character limit of {limit} characters.", (44100, None)
if(not model_holder.current_model):
model_holder.load_model(model_name, model_path)
if(model_holder.current_model.model_path != model_path):
model_holder.load_model(model_name, model_path)
speaker_id = model_holder.current_model.spk2id[speaker]
start_time = datetime.datetime.now()
sr, audio = model_holder.current_model.infer(
text=text,
language=language,
sid=speaker_id,
reference_audio_path=reference_audio_path,
sdp_ratio=sdp_ratio,
noise=noise_scale,
noisew=noise_scale_w,
length=length_scale,
line_split=line_split,
split_interval=split_interval,
style_text=style_text,
style_weight=style_weight,
use_style_text=use_style_text,
style=emotion,
emotion_weight=emotion_weight,
)
end_time = datetime.datetime.now()
duration = (end_time - start_time).total_seconds()
logger.info(f"Successful inference, took {duration}s | {speaker} | {sdp_ratio}/{noise_scale}/{noise_scale_w}/{length_scale}/{emotion}/{emotion_weight} | {text}")
return f"Success, time: {duration} seconds.", (sr, audio)
def load_voicedata():
logger.info("Loading voice data...")
voices = []
styledict = {}
with open("voicelist.json", "r", encoding="utf-8") as f:
voc_info = json.load(f)
for name, info in voc_info.items():
if not info['enable']:
continue
model_path = info['model_path']
voice_name = info['title']
speakerid = info['speakerid']
image = info['cover']
if not model_path in styledict.keys():
conf=f"model_assets/{model_path}/config.json"
hps = utils.get_hparams_from_file(conf)
s2id = hps.data.style2id
styledict[model_path] = s2id.keys()
voices.append((name, model_path, voice_name, speakerid, image))
return voices, styledict
initial_text = "Hello there! This is test audio of Lemonfoot S B V 2."
initial_md = """
# LemonfootSBV2 😊🍋
### Space by [Kit Lemonfoot](https://huggingface.co/Kit-Lemonfoot)/[Noel Shirogane's High Flying Birds](https://www.youtube.com/channel/UCG9A0OJsJTluLOXfMZjJ9xA)
### Based on code originally by [fishaudio](https://github.com/fishaudio) and [litagin02](https://github.com/litagin02)
This HuggingFace space is designed to demonstrate multiple experimental [Style-Bert-VITS2](https://github.com/litagin02/Style-Bert-VITS2) models made by Kit Lemonfoot.
Do no evil.
"""
style_md = """
- You can control things like voice tone, emotion, and reading style through presets or through voice files.
- Neutral acts as an average across all speakers. Styling options act as an override to Neutral.
- Setting the intensity too high will likely break the output.
- The required intensity will depend based on the speaker and the desired style.
- If you're using preexisting audio data to style the output, try to use a voice that is similar to the desired speaker.
"""
def make_interactive():
return gr.update(interactive=True, value="Synthesize")
def make_non_interactive():
return gr.update(interactive=False, value="Synthesize (Please load a model!)")
def gr_util(item):
if item == "Select from presets":
return (gr.update(visible=True), gr.Audio(visible=False, value=None))
else:
return (gr.update(visible=False), gr.update(visible=True))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU")
parser.add_argument(
"--dir", "-d", type=str, help="Model directory", default=config.out_dir
)
args = parser.parse_args()
model_dir = args.dir
if args.cpu:
device = "cpu"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
model_holder = ModelHolder(model_dir, device)
languages = ["EN", "JP", "ZH"]
model_names = model_holder.model_names
if len(model_names) == 0:
logger.error(f"No models found. Please place the model in {model_dir}.")
sys.exit(1)
initial_id = 0
initial_pth_files = model_holder.model_files_dict[model_names[initial_id]]
print(initial_pth_files)
voicedata, styledict = load_voicedata()
#Gradio preload
text_input = gr.TextArea(label="Text", value=initial_text)
line_split = gr.Checkbox(label="Divide text seperately by line breaks", value=True)
split_interval = gr.Slider(
minimum=0.0,
maximum=2,
value=0.5,
step=0.1,
label="Length of division seperation time (in seconds)",
)
language = gr.Dropdown(choices=languages, value="EN", label="Language")
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise_W"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1.0, step=0.1, label="Length"
)
use_style_text = gr.Checkbox(label="Use stylization text", value=False)
style_text = gr.Textbox(
label="Style text",
placeholder="Check the \"Use styleization text\" box to use this option!",
info="The voice will be similar in tone and emotion to the text, however inflection and tempo may be worse as a result.",
visible=True,
)
style_text_weight = gr.Slider(
minimum=0,
maximum=1,
value=0.7,
step=0.1,
label="Text stylization strength",
visible=True,
)
with gr.Blocks(theme=gr.themes.Base(primary_hue="emerald", secondary_hue="green"), title="LemonfootSBV2") as app:
gr.Markdown(initial_md)
for (name, model_path, voice_name, speakerid, image) in voicedata:
with gr.TabItem(name):
mn = gr.Textbox(value=model_path, visible=False, interactive=False)
mp = gr.Textbox(value=f"model_assets\\{model_path}\\{model_path}.safetensors", visible=False, interactive=False)
spk = gr.Textbox(value=speakerid, visible=False, interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown(f"**{voice_name}**\n\nModel name: {model_path}")
gr.Image(f"images/{image}", label=None, show_label=False, width=300, show_download_button=False, container=False)
with gr.Column():
with gr.TabItem("Preset Styles"):
style = gr.Dropdown(
label="Current style (Neutral is an average style)",
choices=styledict[model_path],
value="Neutral",
)
with gr.TabItem("Use an audio file"):
ref_audio_path = gr.Audio(label="Reference Audio", type="filepath")
style_weight = gr.Slider(
minimum=0,
maximum=50,
value=5,
step=0.1,
label="Style strength",
)
with gr.Column():
tts_button = gr.Button(
"Synthesize", variant="primary", interactive=True
)
text_output = gr.Textbox(label="Info")
audio_output = gr.Audio(label="Result")
tts_button.click(
tts_fn,
inputs=[
mn,
mp,
text_input,
language,
ref_audio_path,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
line_split,
split_interval,
style_text,
style_text_weight,
use_style_text,
style,
style_weight,
spk,
],
outputs=[text_output, audio_output],
)
with gr.Row():
with gr.Column():
text_input.render()
line_split.render()
split_interval.render()
language.render()
with gr.Column():
sdp_ratio.render()
noise_scale.render()
noise_scale_w.render()
length_scale.render()
use_style_text.render()
style_text.render()
style_text_weight.render()
with gr.Accordion("Styling Guide", open=False):
gr.Markdown(style_md)
app.launch(allowed_paths=['/file/images/'])
|