File size: 1,800 Bytes
c127950
0897689
c127950
 
0897689
cbcbb46
 
 
 
0897689
 
 
 
 
cbcbb46
0897689
4806750
0897689
 
 
 
 
 
 
 
 
4806750
0897689
df2a868
0897689
7388d5d
f15d7bd
 
32a93fe
7388d5d
0897689
 
b25c66c
2895b02
b25c66c
d382aa7
c127950
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
from huggingface_hub import InferenceClient


def client_fn(model):
    if "Nous" in model:
        return InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
    elif "Star" in model:
        return InferenceClient("HuggingFaceH4/starchat2-15b-v0.1")
    elif "Mistral" in model:
        return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
    elif "Phi" in model:
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
    else: 
        return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

system_instructions1 = "[SYSTEM] Your task is to Answer the question. Keep conversation very short, clear and concise. The expectation is that you will avoid introductions and start answering the query directly, Only answer the question asked by user, Do not say unnecessary things.[QUESTION]"

def models(text, model="Mixtral 8x7B"): 
    
    client = client_fn(model)
    
    generate_kwargs = dict(
        max_new_tokens=300,
    )
    
    formatted_prompt = system_instructions1 + text + "[ANSWER]"
    stream = client.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:        
        if not response.token.text == "</s>":
            output += response.token.text
            if output.endswith("<|assistant|>"):
                output = output[:-13]
    return output

description="""# Chat GO
### Inspired from Google Go"""

demo = gr.Interface(description=description,fn=models, inputs=["text", gr.Dropdown([ 'Mixtral 8x7B','Nous Hermes Mixtral 8x7B DPO','StarChat2 15b','Mistral 7B v0.3','Phi 3 mini', ], value="Phi 3 mini", label="Select Model") ], outputs="text", live=True, batch=True, max_batch_size=1000)
demo.launch()