File size: 11,772 Bytes
c9ca579
efde43c
fabaa3c
 
 
07d03e7
5b0f841
a185be6
 
 
 
5b0f841
 
 
 
 
 
 
 
 
 
 
 
07d03e7
995e163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c36d9d7
995e163
 
 
 
 
 
 
5b0f841
07d03e7
5b0f841
07d03e7
5b0f841
 
cb3cac3
b9da140
07d03e7
fabaa3c
 
 
07d03e7
 
 
5b0f841
 
 
 
 
 
 
07d03e7
 
 
 
 
 
 
 
 
 
 
 
 
ae87863
07d03e7
 
 
 
 
 
 
 
 
fabaa3c
5b0f841
995e163
2965d28
5b0f841
fabaa3c
efde43c
de0f0d9
04d255b
de0f0d9
f62245a
06597e0
fabaa3c
cb3cac3
cd995bb
14e435a
 
cc897a2
cb3cac3
80df0bc
 
 
06597e0
1c0af73
80df0bc
1c0af73
 
cd995bb
1c0af73
 
 
 
06597e0
fabaa3c
de0f0d9
f50b511
1c0af73
07d03e7
cada336
48006fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import gradio as gr

# Import modules from other files
from chatbot import chatbot, model_inference, BOT_AVATAR, EXAMPLES, model_selector, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p
from live_chat import videochat

# Define Gradio theme
theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="orange",
    neutral_hue="gray",
    font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif']
).set(
    body_background_fill_dark="#111111",
    block_background_fill_dark="#111111",
    block_border_width="1px",
    block_title_background_fill_dark="#1e1c26",
    input_background_fill_dark="#292733",
    button_secondary_background_fill_dark="#24212b",
    border_color_primary_dark="#343140",
    background_fill_secondary_dark="#111111",
    color_accent_soft_dark="transparent"
)

import edge_tts
import asyncio
import tempfile
import numpy as np
import soxr
from pydub import AudioSegment
import torch
import sentencepiece as spm
import onnxruntime as ort
from huggingface_hub import hf_hub_download, InferenceClient
import requests
from bs4 import BeautifulSoup
import urllib
import random

# List of user agents to choose from for requests
_useragent_list = [
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
    'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]

def get_useragent():
    """Returns a random user agent from the list."""
    return random.choice(_useragent_list)

def extract_text_from_webpage(html_content):
    """Extracts visible text from HTML content using BeautifulSoup."""
    soup = BeautifulSoup(html_content, "html.parser")
    # Remove unwanted tags
    for tag in soup(["script", "style", "header", "footer", "nav"]):
        tag.extract()
    # Get the remaining visible text
    visible_text = soup.get_text(strip=True)
    return visible_text

def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
    """Performs a Google search and returns the results."""
    escaped_term = urllib.parse.quote_plus(term)
    start = 0
    all_results = []

    # Fetch results in batches
    while start < num_results:
        resp = requests.get(
            url="https://www.google.com/search",
            headers={"User-Agent": get_useragent()}, # Set random user agent
            params={
                "q": term,
                "num": num_results - start, # Number of results to fetch in this batch
                "hl": lang,
                "start": start,
                "safe": safe,
            },
            timeout=timeout,
            verify=ssl_verify,
        )
        resp.raise_for_status() # Raise an exception if request fails

        soup = BeautifulSoup(resp.text, "html.parser")
        result_block = soup.find_all("div", attrs={"class": "g"})

        # If no results, continue to the next batch
        if not result_block:
            start += 1
            continue

        # Extract link and text from each result
        for result in result_block:
            link = result.find("a", href=True)
            if link:
                link = link["href"]
                try:
                    # Fetch webpage content
                    webpage = requests.get(link, headers={"User-Agent": get_useragent()})
                    webpage.raise_for_status()
                    # Extract visible text from webpage
                    visible_text = extract_text_from_webpage(webpage.text)
                    all_results.append({"link": link, "text": visible_text})
                except requests.exceptions.RequestException as e:
                    # Handle errors fetching or processing webpage
                    print(f"Error fetching or processing {link}: {e}")
                    all_results.append({"link": link, "text": None})
            else:
                all_results.append({"link": None, "text": None})

        start += len(result_block) # Update starting index for next batch

    return all_results

# Speech Recognition Model Configuration
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
sample_rate = 16000

# Download preprocessor, encoder and tokenizer
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))

# Mistral Model Configuration
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

def resample(audio_fp32, sr):
    return soxr.resample(audio_fp32, sr, sample_rate)

def to_float32(audio_buffer):
    return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)

def transcribe(audio_path):
    audio_file = AudioSegment.from_file(audio_path)
    sr = audio_file.frame_rate
    audio_buffer = np.array(audio_file.get_array_of_samples())

    audio_fp32 = to_float32(audio_buffer)
    audio_16k = resample(audio_fp32, sr)

    input_signal = torch.tensor(audio_16k).unsqueeze(0)
    length = torch.tensor(len(audio_16k)).unsqueeze(0)
    processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
    
    logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]

    blank_id = tokenizer.vocab_size()
    decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
    text = tokenizer.decode_ids(decoded_prediction)

    return text

def model(text, web_search):
    if web_search is True:
        """Performs a web search, feeds the results to a language model, and returns the answer."""
        web_results = search(text)
        web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
        formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
        stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
        return "".join([response.token.text for response in stream if response.token.text != "</s>"])
    else:
        formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
        stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
        return "".join([response.token.text for response in stream if response.token.text != "</s>"])

async def respond(audio, web_search):
    user = transcribe(audio)
    reply = model(user, web_search)
    communicate = edge_tts.Communicate(reply)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    return tmp_path

with gr.Blocks() as voice:    
    gr.Markdown("## Temproraly Not Working (Update in Progress)")
    with gr.Row():
        web_search = gr.Checkbox(label="Web Search", value=False)
        input = gr.Audio(label="User Input", sources="microphone", type="filepath")
        output = gr.Audio(label="AI", autoplay=True)
        gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)


# Create Gradio blocks for different functionalities

# Chat interface block
with gr.Blocks(
        fill_height=True,
        css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""",
) as chat:
    gr.Markdown("### Image Chat, Image Generation and Normal Chat")
    with gr.Row(elem_id="model_selector_row"):
        # model_selector defined in chatbot.py
        pass  
    # decoding_strategy, temperature, top_p defined in chatbot.py
    decoding_strategy.change(
        fn=lambda selection: gr.Slider(
            visible=(
                    selection
                    in [
                        "contrastive_sampling",
                        "beam_sampling",
                        "Top P Sampling",
                        "sampling_top_k",
                    ]
            )
        ),
        inputs=decoding_strategy,
        outputs=temperature,
    )
    decoding_strategy.change(
        fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
        inputs=decoding_strategy,
        outputs=top_p,
    )
    gr.ChatInterface(
        fn=model_inference,
        chatbot=chatbot,
        examples=EXAMPLES,
        multimodal=True,
        cache_examples=False,
        additional_inputs=[
            model_selector,
            decoding_strategy,
            temperature,
            max_new_tokens,
            repetition_penalty,
            top_p,
            gr.Checkbox(label="Web Search", value=True),
        ],
    )    

# Live chat block
with gr.Blocks() as livechat:
    gr.Interface(
        fn=videochat,
        inputs=[gr.Image(type="pil",sources="webcam", label="Upload Image"), gr.Textbox(label="Prompt", value="what he is doing")],
        outputs=gr.Textbox(label="Answer")
    )

# Other blocks (instant, dalle, playground, image, instant2, video)
with gr.Blocks() as instant:
    gr.HTML("<iframe src='https://kingnish-sdxl-flash.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")

with gr.Blocks() as dalle:
    gr.HTML("<iframe src='https://kingnish-image-gen-pro.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")

with gr.Blocks() as playground:
    gr.HTML("<iframe src='https://fluently-fluently-playground.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")

with gr.Blocks() as image:
    gr.Markdown("""### More models are coming""")
    gr.TabbedInterface([ instant, dalle, playground], ['Instant🖼️','Powerful🖼️', 'Playground🖼'])    

with gr.Blocks() as instant2:
    gr.HTML("<iframe src='https://kingnish-instant-video.hf.space' width='100%' height='3000px' style='border-radius: 8px;'></iframe>")

with gr.Blocks() as video:
    gr.Markdown("""More Models are coming""")
    gr.TabbedInterface([ instant2], ['Instant🎥'])   

# Main application block
with gr.Blocks(theme=theme, title="OpenGPT 4o DEMO") as demo:
    gr.Markdown("# OpenGPT 4o")
    gr.TabbedInterface([chat, voice, livechat, image, video], ['💬 SuperChat','🗣️ Voice Chat','📸 Live Chat', '🖼️ Image Engine', '🎥 Video Engine'])

demo.queue(max_size=300)
demo.launch()