Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,934 Bytes
0f8ec45 2d30d63 0f8ec45 1fd4564 da74abb 2d30d63 0f8ec45 dd6d711 0f8ec45 dd6d711 da74abb 0f8ec45 ed2d2b6 0f8ec45 2d30d63 ed2d2b6 2d30d63 0f8ec45 ed2d2b6 0f8ec45 3142fb1 0f8ec45 ed2d2b6 0f8ec45 ad0113c 0f8ec45 afeabee dd6d711 afeabee da74abb ed2d2b6 afeabee dd6d711 9459bfb d68c977 dd6d711 0f8ec45 ed2d2b6 0f8ec45 da74abb 0f8ec45 543cd64 0f8ec45 8f1a540 cf80990 8f1a540 cf80990 c1d1b49 1332b31 8f1a540 cf80990 1332b31 8f1a540 cf80990 1332b31 8f1a540 2d30d63 c1d1b49 1332b31 8f1a540 1332b31 8f1a540 1332b31 8f1a540 0f8ec45 582e489 0f8ec45 582e489 0f8ec45 56b6710 0f8ec45 8f1a540 cf80990 8f1a540 cd04efe 8f1a540 0f8ec45 6aef7b0 2d30d63 0f8ec45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
from __future__ import annotations
import math
import random
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
from huggingface_hub import hf_hub_download
from huggingface_hub import InferenceClient
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
repo = "stabilityai/stable-diffusion-3-medium-diffusers"
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
help_text = """
To optimize image results:
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
- Modify the **Text CFG weight** to influence how closely the edit follows text instructions. Increase it to adhere more to the text, or decrease it for subtler changes.
- Experiment with different **random seeds** and **CFG values** for varied outcomes.
- **Rephrase your instructions** for potentially better results.
- **Increase the number of steps** for enhanced edits.
"""
def set_timesteps_patched(self, num_inference_steps: int, device = None):
self.num_inference_steps = num_inference_steps
ramp = np.linspace(0, 1, self.num_inference_steps)
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
sigmas = (sigmas).to(dtype=torch.float32, device=device)
self.timesteps = self.precondition_noise(sigmas)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu")
# Image Editor
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
EDMEulerScheduler.set_timesteps = set_timesteps_patched
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
)
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to("cuda")
# Generator
@spaces.GPU(duration=30, queue=False)
def king(type ,
input_image ,
instruction: str ,
steps: int = 8,
randomize_seed: bool = False,
seed: int = 25,
text_cfg_scale: float = 7.3,
image_cfg_scale: float = 1.7,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 6,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
):
if type=="Image Editing" :
if randomize_seed:
seed = random.randint(0, 99999)
text_cfg_scale = text_cfg_scale
image_cfg_scale = image_cfg_scale
input_image = input_image
steps=steps
generator = torch.manual_seed(seed)
output_image = pipe_edit(
instruction, image=input_image,
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
num_inference_steps=steps, generator=generator).images[0]
return seed, output_image
else :
if randomize_seed:
seed = random.randint(0, 99999)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = instruction,
guidance_scale = 7,
num_inference_steps = steps,
width = width,
height = height,
generator = generator
).images[0]
return seed, image
# Prompt classifier
def response(instruction, input_image=None):
if input_image is None:
output="Image Generation"
yield output
else:
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
generate_kwargs = dict(
max_new_tokens=5,
)
system="[SYSTEM] You will be provided with text, and your task is to classify task is image generation or image editing answer with only task do not say anything else and stop as soon as possible. [TEXT]"
formatted_prompt = system + instruction + "[TASK]"
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
if "editing" in output:
output = "Image Editing"
else:
output = "Image Generation"
yield output
return output
css = '''
.gradio-container{max-width: 600px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
examples=[
[
"Image Generation",
None,
"A luxurious supercar with a unique design. The car should have a pearl white finish, and gold accents. 4k, realistic.",
],
[
"Image Editing",
"./supercar.png",
"make it red",
],
[
"Image Editing",
"./red_car.png",
"add some snow",
],
[
"Image Generation",
None,
"Ironman fighting with hulk, wall painting",
],
[
"Image Generation",
None,
"Beautiful Eiffel Tower at Night",
],
]
with gr.Blocks(css=css) as demo:
gr.Markdown("# Image Generator Pro")
with gr.Row():
with gr.Column(scale=4):
instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
with gr.Column(scale=1):
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True, info="AI will select option based on your query, but if it selects wrong, please choose correct one.")
with gr.Column(scale=1):
generate_button = gr.Button("Generate")
with gr.Row():
input_image = gr.Image(label="Image", type="pil", interactive=True)
with gr.Row():
text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
image_cfg_scale = gr.Number(value=1.7, step=0.1,label="Image CFG", interactive=True)
steps = gr.Number(value=25, precision=0, label="Steps", interactive=True)
randomize_seed = gr.Radio(
["Fix Seed", "Randomize Seed"],
value="Randomize Seed",
type="index",
show_label=False,
interactive=True,
)
seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
gr.Examples(
examples=examples,
inputs=[type,input_image, instruction],
fn=king,
outputs=[input_image],
cache_examples=False,
)
gr.Markdown(help_text)
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
input_image.upload(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
gr.on(triggers=[
generate_button.click,
instruction.submit
],
fn=king,
inputs=[type,
input_image,
instruction,
steps,
randomize_seed,
seed,
text_cfg_scale,
image_cfg_scale,
],
outputs=[seed, input_image],
)
demo.queue(max_size=99999).launch() |