Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,672 Bytes
e6af450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import random
from PIL import Image
import cv2
import numpy as np
import torch
from torchvision import transforms
from torchvision.transforms import functional as F
from torchvision.transforms import InterpolationMode
class MaxLongEdgeMinShortEdgeResize(torch.nn.Module):
"""Resize the input image so that its longest side and shortest side are within a specified range,
ensuring that both sides are divisible by a specified stride.
Args:
max_size (int): Maximum size for the longest edge of the image.
min_size (int): Minimum size for the shortest edge of the image.
stride (int): Value by which the height and width of the image must be divisible.
max_pixels (int): Maximum pixels for the full image.
interpolation (InterpolationMode): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
``InterpolationMode.BILINEAR``, and ``InterpolationMode.BICUBIC`` are supported.
The corresponding Pillow integer constants, e.g., ``PIL.Image.BILINEAR`` are also accepted.
antialias (bool, optional): Whether to apply antialiasing (default is True).
"""
def __init__(
self,
max_size: int,
min_size: int,
stride: int,
max_pixels: int,
interpolation=InterpolationMode.BICUBIC,
antialias=True
):
super().__init__()
self.max_size = max_size
self.min_size = min_size
self.stride = stride
self.max_pixels = max_pixels
self.interpolation = interpolation
self.antialias = antialias
def _make_divisible(self, value, stride):
"""Ensure the value is divisible by the stride."""
return max(stride, int(round(value / stride) * stride))
def _apply_scale(self, width, height, scale):
new_width = round(width * scale)
new_height = round(height * scale)
new_width = self._make_divisible(new_width, self.stride)
new_height = self._make_divisible(new_height, self.stride)
return new_width, new_height
def forward(self, img, img_num=1):
"""
Args:
img (PIL Image): Image to be resized.
img_num (int): Number of images, used to change max_tokens.
Returns:
PIL Image or Tensor: Rescaled image with divisible dimensions.
"""
if isinstance(img, torch.Tensor):
height, width = img.shape[-2:]
else:
width, height = img.size
scale = min(self.max_size / max(width, height), 1.0)
scale = max(scale, self.min_size / min(width, height))
new_width, new_height = self._apply_scale(width, height, scale)
# Ensure the number of pixels does not exceed max_pixels
if new_width * new_height > self.max_pixels / img_num:
scale = self.max_pixels / img_num / (new_width * new_height)
new_width, new_height = self._apply_scale(new_width, new_height, scale)
# Ensure longest edge does not exceed max_size
if max(new_width, new_height) > self.max_size:
scale = self.max_size / max(new_width, new_height)
new_width, new_height = self._apply_scale(new_width, new_height, scale)
return F.resize(img, (new_height, new_width), self.interpolation, antialias=self.antialias)
class ImageTransform:
def __init__(
self,
max_image_size,
min_image_size,
image_stride,
max_pixels=14*14*9*1024,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5]
):
self.stride = image_stride
self.resize_transform = MaxLongEdgeMinShortEdgeResize(
max_size=max_image_size,
min_size=min_image_size,
stride=image_stride,
max_pixels=max_pixels,
)
self.to_tensor_transform = transforms.ToTensor()
self.normalize_transform = transforms.Normalize(mean=image_mean, std=image_std, inplace=True)
def __call__(self, img, img_num=1):
img = self.resize_transform(img, img_num=img_num)
img = self.to_tensor_transform(img)
img = self.normalize_transform(img)
return img
def decolorization(image):
gray_image = image.convert('L')
return Image.merge(image.mode, [gray_image] * 3) if image.mode in ('RGB', 'L') else gray_image
def downscale(image, scale_factor):
new_width = int(round(image.width * scale_factor))
new_height = int(round(image.height * scale_factor))
new_width = max(1, new_width)
new_height = max(1, new_height)
return image.resize((new_width, new_height), resample=Image.BICUBIC)
def crop(image, crop_factors):
target_h, target_w = crop_factors
img_w, img_h = image.size
if target_h > img_h or target_w > img_w:
raise ValueError("Crop size exceeds image dimensions")
x = random.randint(0, img_w - target_w)
y = random.randint(0, img_h - target_h)
return image.crop((x, y, x + target_w, y + target_h)), [[x, y], [x + target_w, y + target_h]]
def motion_blur_opencv(image, kernel_size=15, angle=0):
# 线性核
kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32)
kernel[kernel_size // 2, :] = np.ones(kernel_size, dtype=np.float32)
# 旋转核
center = (kernel_size / 2 - 0.5, kernel_size / 2 - 0.5)
M = cv2.getRotationMatrix2D(center, angle, 1)
rotated_kernel = cv2.warpAffine(kernel, M, (kernel_size, kernel_size))
# 归一化核
rotated_kernel /= rotated_kernel.sum() if rotated_kernel.sum() != 0 else 1
img = np.array(image)
if img.ndim == 2:
blurred = cv2.filter2D(img, -1, rotated_kernel, borderType=cv2.BORDER_REFLECT)
else:
# 对于彩色图像,各通道独立卷积
blurred = np.zeros_like(img)
for c in range(img.shape[2]):
blurred[..., c] = cv2.filter2D(img[..., c], -1, rotated_kernel, borderType=cv2.BORDER_REFLECT)
return Image.fromarray(blurred.astype(np.uint8))
def shuffle_patch(image, num_splits, gap_size=2):
"""将图像分割为块(允许尺寸不整除),随机打乱后拼接,块间保留间隙"""
h_splits, w_splits = num_splits
img_w, img_h = image.size
base_patch_h = img_h // h_splits
patch_heights = [base_patch_h] * (h_splits - 1)
patch_heights.append(img_h - sum(patch_heights))
base_patch_w = img_w // w_splits
patch_widths = [base_patch_w] * (w_splits - 1)
patch_widths.append(img_w - sum(patch_widths))
patches = []
current_y = 0
for i in range(h_splits):
current_x = 0
patch_h = patch_heights[i]
for j in range(w_splits):
patch_w = patch_widths[j]
patch = image.crop((current_x, current_y, current_x + patch_w, current_y + patch_h))
patches.append(patch)
current_x += patch_w
current_y += patch_h
random.shuffle(patches)
total_width = sum(patch_widths) + (w_splits - 1) * gap_size
total_height = sum(patch_heights) + (h_splits - 1) * gap_size
new_image = Image.new(image.mode, (total_width, total_height), color=(255, 255, 255))
current_y = 0 # 当前行的起始 Y 坐标
patch_idx = 0 # 当前处理的块索引
for i in range(h_splits):
current_x = 0 # 当前列的起始 X 坐标
patch_h = patch_heights[i] # 当前行块的高度
for j in range(w_splits):
# 取出打乱后的块
patch = patches[patch_idx]
patch_w = patch_widths[j] # 当前列块的宽度
# 粘贴块(左上角坐标为 (current_x, current_y))
new_image.paste(patch, (current_x, current_y))
# 更新 X 坐标(下一个块的起始位置 = 当前块宽度 + 间隙)
current_x += patch_w + gap_size
patch_idx += 1
# 更新 Y 坐标(下一行的起始位置 = 当前行高度 + 间隙)
current_y += patch_h + gap_size
return new_image
def inpainting(image, num_splits, blank_ratio=0.3, blank_color=(255, 255, 255)):
"""
图像分割后随机空白部分patch,用于inpainting任务
参数:
image: PIL.Image 输入图像(RGB模式)
h_splits: int 行分割数(垂直方向分割块数)
w_splits: int 列分割数(水平方向分割块数)
blank_ratio: float 空白patch的比例(0~1)
blank_color: tuple 空白区域的颜色(RGB,如白色(255,255,255))
返回:
PIL.Image 处理后拼接的图像
"""
h_splits, w_splits = num_splits
img_w, img_h = image.size
base_patch_h = img_h // h_splits
patch_heights = [base_patch_h] * (h_splits - 1)
patch_heights.append(img_h - sum(patch_heights))
base_patch_w = img_w // w_splits
patch_widths = [base_patch_w] * (w_splits - 1)
patch_widths.append(img_w - sum(patch_widths))
patches = []
current_y = 0
for i in range(h_splits):
current_x = 0
patch_h = patch_heights[i]
for j in range(w_splits):
patch_w = patch_widths[j]
patch = image.crop((current_x, current_y, current_x + patch_w, current_y + patch_h))
patches.append(patch)
current_x += patch_w
current_y += patch_h
total_patches = h_splits * w_splits
num_blank = int(total_patches * blank_ratio)
num_blank = max(0, min(num_blank, total_patches))
blank_indices = random.sample(range(total_patches), num_blank)
processed_patches = []
for idx, patch in enumerate(patches):
if idx in blank_indices:
blank_patch = Image.new("RGB", patch.size, color=blank_color)
processed_patches.append(blank_patch)
else:
processed_patches.append(patch)
# 创建结果图像(尺寸与原图一致)
result_image = Image.new("RGB", (img_w, img_h))
current_y = 0
patch_idx = 0
for i in range(h_splits):
current_x = 0
patch_h = patch_heights[i]
for j in range(w_splits):
# 取出处理后的patch
patch = processed_patches[patch_idx]
patch_w = patch_widths[j]
# 粘贴到原位置
result_image.paste(patch, (current_x, current_y))
current_x += patch_w
patch_idx += 1
current_y += patch_h
return result_image
|