File size: 8,835 Bytes
f5790af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
import torch.nn as nn
import torch.nn.functional as F
import wget
import json
import os
import sentencepiece as spm
import re

CODEGEN_FOLDER = "./CodeGenModel"
CODEGEN_MODEL_NAME = "codegen-350M-multi"
CODEGEN_MODEL_WEIGHTS = "pytorch_model.bin"
CODEGEN_CONFIG = "config.json"
CODEGEN_VOCAB = "vocab.json"
CODEGEN_MERGES = "merges.txt"
CODEGEN_MODEL_WEIGHTS_URL = "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/pytorch_model.bin"
CODEGEN_CONFIG_URL = "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json"
CODEGEN_VOCAB_URL = "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/vocab.json"
CODEGEN_MERGES_URL = "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/merges.txt"
CODEGEN_FILES_URLS = [
    (CODEGEN_MODEL_WEIGHTS_URL, CODEGEN_MODEL_WEIGHTS),
    (CODEGEN_CONFIG_URL, CODEGEN_CONFIG),
    (CODEGEN_VOCAB_URL, CODEGEN_VOCAB),
    (CODEGEN_MERGES_URL, CODEGEN_MERGES),
]
CODEGEN_SPM_URL = "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/spm.model"
CODEGEN_SPM = "spm.model"

def ensure_codegen_files_exist():
    os.makedirs(CODEGEN_FOLDER, exist_ok=True)
    for url, filename in CODEGEN_FILES_URLS:
        filepath = os.path.join(CODEGEN_FOLDER, filename)
        if not os.path.exists(filepath):
            wget.download(url, out=filepath)
    filepath_spm = os.path.join(CODEGEN_FOLDER, CODEGEN_SPM)
    if not os.path.exists(filepath_spm):
        wget.download(CODEGEN_SPM_URL, out=filepath_spm)

class CodeGenConfig:
    def __init__(self, vocab_size, n_positions=2048, n_ctx=2048, n_embd=1024, n_layer=24, n_head=16, n_inner=None, activation_function="gelu_new", resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-05, initializer_range=0.02, scale_attn_weights=True, use_cache=True, bos_token_id=50256, eos_token_id=50256, **kwargs):
        self.vocab_size = vocab_size
        self.n_positions = n_positions
        self.n_ctx = n_ctx
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_inner = n_inner
        self.activation_function = activation_function
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attn_pdrop = attn_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.scale_attn_weights = scale_attn_weights
        self.use_cache = use_cache
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        for key, value in kwargs.items():
            setattr(self, key, value)

    @classmethod
    def from_dict(cls, config_dict):
        return cls(**config_dict)

class CodeGenForCausalLM(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transformer = CodeGenModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

    def forward(self, input_ids, attention_mask=None):
        transformer_outputs = self.transformer(input_ids, attention_mask=attention_mask)
        logits = self.lm_head(transformer_outputs)
        return logits

class CodeGenModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([CodeGenBlock(config) for _ in range(config.n_layer)])
        self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)

    def forward(self, input_ids, attention_mask=None):
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = torch.arange(0, input_shape[-1], dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds
        hidden_states = self.drop(hidden_states)
        output_shape = input_shape + (hidden_states.size(-1),)
        for block in self.h:
            hidden_states = block(hidden_states, attention_mask=attention_mask)
        hidden_states = self.ln_f(hidden_states)
        return hidden_states.view(*output_shape)

class CodeGenBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.attn = CodeGenAttention(config)
        self.ln_2 = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.mlp = CodeGenMLP(config)

    def forward(self, hidden_states, attention_mask=None):
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_outputs = self.attn(hidden_states, attention_mask=attention_mask)
        hidden_states = residual + attn_outputs
        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feedforward_hidden_states = self.mlp(hidden_states)
        hidden_states = residual + feedforward_hidden_states
        return hidden_states

class CodeGenMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, config.n_inner)
        self.c_proj = nn.Linear(config.n_inner, config.n_embd)
        self.dropout = nn.Dropout(config.resid_pdrop)

    def forward(self, hidden_states):
        hidden_states = self.c_fc(hidden_states)
        hidden_states = F.gelu(hidden_states)
        hidden_states = self.c_proj(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states

class CodeGenAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
        self.n_head = config.n_head
        self.embed_dim = config.n_embd
        self.split_size = self.embed_dim
        self.c_attn = nn.Linear(self.embed_dim, 3 * self.embed_dim)
        self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.scale_attn_weights = config.scale_attn_weights
        self.use_cache = config.use_cache
        self.register_buffer("bias", torch.tril(torch.ones((config.n_ctx, config.n_ctx), dtype=torch.uint8)).view((1, 1, config.n_ctx, config.n_ctx)))

    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        attn_weights = torch.matmul(query, key.transpose(-1, -2))
        if self.scale_attn_weights:
            attn_weights = attn_weights / math.sqrt(value.size(-1))

        mask = self.bias[:, :, :attn_weights.size(-2), :attn_weights.size(-1)]
        attn_weights = torch.where(mask.bool(), attn_weights, torch.tensor(-1e4, device=attn_weights.device))

        if attention_mask is not None:
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.Softmax(dim=-1)(attn_weights)
        attn_weights = self.attn_dropout(attn_weights)
        attn_output = torch.matmul(attn_weights, value)
        return attn_output

    def _split_heads(self, tensor, num_heads, attn_head_size):
        new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
        tensor = tensor.view(*new_shape)
        return tensor.permute(0, 2, 1, 3)

    def _merge_heads(self, tensor, num_heads, attn_head_size):
        new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
        return tensor.view(*new_shape)

    def forward(self, hidden_states, attention_mask=None, head_mask=None, past_key_value=None, use_cache=False):
        query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
        query = self._split_heads(query, self.n_head, self.embed_dim // self.n_head)
        key = self._split_heads(key, self.n_head, self.embed_dim // self.n_head)
        value = self._split_heads(value, self.n_head, self.embed_dim // self.n_head)
        if past_key_value is not None:
            past_key, past_value = past_key_value
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)
        present_key_value = (key, value) if use_cache else None
        attn_output = self._attn(query, key, value, attention_mask, head_mask)
        attn_output = self._merge_heads(attn_output, self.n_head, self.embed_dim // self.n_head)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)
        outputs = (attn_output, present_key_value)
        return outputs[0]