File size: 28,569 Bytes
f5790af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
import os
import sys
import torch
import random
import re
import json
import math
import copy
import requests
from functools import lru_cache
from tqdm import tqdm
from torch.nn.parameter import Parameter
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
import time
import threading
import queue
import httpx
import asyncio
import torch.nn as nn
import torch.nn.functional as F
import uuid
import wget
from duckduckgo_search import DDGS
import warnings
from datetime import datetime
import unicodedata
import nltk
import torchaudio
import logging
from PIL import Image
from io import BytesIO
import sentencepiece as spm
from flask import Flask, request, jsonify, send_file, Response
from flask_cors import CORS

nltk.download('punkt', quiet=True)

GPT2_FOLDER = "./GPT2"
MODEL_FILE = "gpt2-pytorch_model.bin"
ENCODER_FILE = "encoder.json"
VOCAB_FILE = "vocab.bpe"
MODEL_URL = "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-pytorch_model.bin"
ENCODER_URL = "https://raw.githubusercontent.com/graykode/gpt-2-Pytorch/refs/heads/master/GPT2/GPT2/encoder.json"
VOCAB_URL = "https://raw.githubusercontent.com/graykode/gpt-2-Pytorch/refs/heads/master/GPT2/GPT2/vocab.bpe"
GPT2_FILES_URLS = [
    (MODEL_URL, MODEL_FILE),
    (ENCODER_URL, ENCODER_FILE),
    (VOCAB_URL, VOCAB_FILE),
]

TEXT_GENERATION_RATE = 40000
MAX_LENGTH = 1024
MAX_XDD = 5
END_OF_TEXT_TOKEN = "<|endoftext|>"

html_code = """<!DOCTYPE html>

<html lang="en">

<head>

    <meta charset="UTF-8">

    <meta name="viewport" content="width=device-width, initial-scale=1.0">

    <title>AI Text Generation</title>

    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/animate.css/4.1.1/animate.min.css"/>

    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css" integrity="sha512-9usAa10IRO0HhonpyAIVpjrylPvoDwiPUiKdWk5t3PyolY1cOd4DSE0Ga+ri4AuTroPR5aQvXU9xC6qOPnzFeg==" crossorigin="anonymous" referrerpolicy="no-referrer" />

    <script src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"></script>

    <style>

        body {

            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

            background: #f0f0f0;

            color: #333;

            margin: 0;

            padding: 0;

            display: flex;

            flex-direction: column;

            align-items: center;

            min-height: 100vh;

        }

        .container {

            width: 95%;

            max-width: 900px;

            padding: 20px;

            background-color: #fff;

            box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

            border-radius: 8px;

            margin-top: 20px;

            margin-bottom: 20px;

            display: flex;

            flex-direction: column;

        }

        .header {

            text-align: center;

            margin-bottom: 20px;

        }

        .header h1 {

            font-size: 2em;

            color: #333;

        }

        .form-group {

            margin-bottom: 15px;

        }

        .form-group textarea {

            width: 100%;

            padding: 10px;

            border: 1px solid #ccc;

            border-radius: 5px;

            font-size: 16px;

            box-sizing: border-box;

            resize: vertical;

        }

        button {

            padding: 10px 15px;

            border: none;

            border-radius: 5px;

            background-color: #007bff;

            color: white;

            font-size: 18px;

            cursor: pointer;

            transition: background-color 0.3s ease;

        }

        button:hover {

            background-color: #0056b3;

        }

        #output {

            margin-top: 20px;

            padding: 15px;

            border: 1px solid #ddd;

            border-radius: 5px;

            background-color: #f9f9f9;

            white-space: pre-wrap;

            word-break: break-word;

            overflow-y: auto;

            max-height: 100vh;

        }

        #output strong {

            font-weight: bold;

        }

        .animated-text {

            position: fixed;

            top: 20px;

            left: 20px;

            font-size: 1.5em;

            color: rgba(0, 0, 0, 0.1);

            pointer-events: none;

            z-index: -1;

        }

        @media (max-width: 768px) {

            .container {

                width: 98%;

                margin-top: 10px;

                margin-bottom: 10px;

                padding: 15px;

            }

            .header h1 {

                font-size: 1.8em;

            }

            .form-group textarea, .form-group input[type="text"] {

                font-size: 14px;

                padding: 8px;

            }

            button {

                font-size: 16px;

                padding: 8px 12px;

            }

            #output {

                font-size: 14px;

                padding: 10px;

                margin-top: 15px;

            }

        }

    </style>

</head>

<body>

<div class="animated-text animate__animated animate__fadeIn animate__infinite infinite">AI POWERED</div>

<div class="container">

    <div class="header animate__animated animate__fadeInDown">

    </div>

    <div class="form-group animate__animated animate__fadeInLeft">

        <textarea id="text" rows="5" placeholder="Enter text"></textarea>

    </div>

    <button onclick="generateText()" class="animate__animated animate__fadeInUp">Generate Reasoning</button>

    <div id="output" class="animate__animated">

        <strong >Response:</strong><br>

        <div id="generatedText"></div>

    </div>

</div>

<script>

    let eventSource = null;

    let accumulatedText = "";

    let lastResponse = "";

    let currentSpan = null;

    let messageCounter = 0;



    async function generateText() {

        const inputText = document.getElementById("text").value;

        const generatedTextDiv = document.getElementById("generatedText");

        generatedTextDiv.innerHTML = "";

        accumulatedText = "";

        lastResponse = "";

        currentSpan = null;

        messageCounter = 0;



        if (eventSource) {

            eventSource.close();

        }

        const temp = 0.7;

        const top_k_val = 40;

        const top_p_val = 0.0;

        const repetition_penalty_val = 1.2;

        eventSource = new EventSource(`/generate_stream?text=${encodeURIComponent(inputText)}&temp=${temp}&top_k=${top_k_val}&top_p=${top_p_val}&reppenalty=${reppenalty_val}`);

        eventSource.onmessage = function(event) {

            if (event.data === "<END_STREAM>") {

                eventSource.close();

                const currentResponse = accumulatedText.replace("<|endoftext|>", "").replace(re.compile(r'\\s+(?=[.,,。])'), '').trim();

                if (currentResponse === lastResponse.trim()) {

                    accumulatedText = "**Response is repetitive. Please try again or rephrase your query.**";

                } else {

                    lastResponse = currentResponse;

                }

                document.getElementById("generatedText").innerHTML = marked.parse(accumulatedText);

                return;

            }

            try {

                const jsonData = JSON.parse(event.data);

                const token = jsonData.token;

                if (token === "<|endoftext|>" || token === "<END_STREAM>") {

                    return;

                }

                if (token === "<NEW_MESSAGE>") {

                    messageCounter++;

                    if (messageCounter > 1) {

                        generatedTextDiv.innerHTML += "<br><br><hr style='border-top: 1px dashed #8c8b8b; margin-top: 10px; margin-bottom: 10px;'><strong>Continued Response:</strong><br><div id='generatedText_" + messageCounter + "'></div>";

                        generatedTextDiv = document.getElementById("generatedText_" + messageCounter);

                        accumulatedText = "";

                    }

                    return;

                }

                accumulatedText += token + " ";

            } catch (e) {

                console.error("Error parsing SSE data:", event.data, e);

            }

        };

        eventSource.onerror = function(error) {

            console.error("SSE error", error);

            eventSource.close();

        };

        const outputDiv = document.getElementById("output");

        outputDiv.classList.add("show");

    }

</script>

</body>

</html>

"""

TRANSLATION_FOLDER = "./TranslationModel"
TRANSLATION_MODEL_WEIGHTS_FILE = "pytorch_model.bin"
TRANSLATION_MODEL_CONFIG_FILE = "config.json"
TRANSLATION_MODEL_VOCAB_FILE = "sentencepiece.bpe.model"
TRANSLATION_MODEL_WEIGHTS_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/pytorch_model.bin"
TRANSLATION_MODEL_CONFIG_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/config.json"
TRANSLATION_MODEL_VOCAB_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/sentencepiece.bpe.model"
TRANSLATION_MODEL_FILES_URLS = [
    (TRANSLATION_MODEL_WEIGHTS_URL, TRANSLATION_MODEL_WEIGHTS_FILE),
    (TRANSLATION_MODEL_CONFIG_URL, TRANSLATION_MODEL_CONFIG_FILE),
    (TRANSLATION_MODEL_VOCAB_URL, TRANSLATION_MODEL_VOCAB_FILE),
]

CODEGEN_FOLDER = "./CodeGenModel"
CODEGEN_MODEL_NAME = "codegen-350M-multi"
CODEGEN_MODEL_WEIGHTS = "pytorch_model.bin"
CODEGEN_CONFIG = "config.json"
CODEGEN_VOCAB = "vocab.json"
CODEGEN_MERGES = "merges.txt"
CODEGEN_MODEL_WEIGHTS_URL = "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/pytorch_model.bin"
CODEGEN_CONFIG_URL = "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json"
CODEGEN_VOCAB_URL = "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/vocab.json"
CODEGEN_MERGES_URL = "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/merges.txt"
CODEGEN_FILES_URLS = [
    (CODEGEN_MODEL_WEIGHTS_URL, CODEGEN_MODEL_WEIGHTS),
    (CODEGEN_CONFIG_URL, CODEGEN_CONFIG),
    (CODEGEN_VOCAB_URL, CODEGEN_VOCAB),
    (CODEGEN_MERGES_URL, CODEGEN_MERGES),
]

TTS_FOLDER = "./TTSModel"
TTS_MODEL_NAME = "vits"
TTS_MODEL_CONFIG = "config.json"
TTS_MODEL_WEIGHTS = "pytorch_model.bin"
TTS_VOCAB = "vocab.json"
TTS_CONFIG_URL = "https://huggingface.co/kakao-enterprise/vits-vctk/resolve/main/config.json"
TTS_MODEL_WEIGHTS_URL = "https://huggingface.co/kakao-enterprise/vits-vctk/resolve/main/pytorch_model.bin"
TTS_VOCAB_URL = "https://huggingface.co/kakao-enterprise/vits-vctk/resolve/main/vocab.json"
TTS_FILES_URLS = [
    (TTS_CONFIG_URL, TTS_MODEL_CONFIG),
    (TTS_MODEL_WEIGHTS_URL, TTS_MODEL_WEIGHTS),
    (TTS_VOCAB_URL, TTS_VOCAB),
]

STT_FOLDER = "./STTModel"
STT_MODEL_NAME = "wav2vec2"
STT_MODEL_WEIGHTS = "pytorch_model.bin"
STT_CONFIG = "config.json"
STT_VOCAB = "vocab.json"
STT_MODEL_WEIGHTS_URL = "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/pytorch_model.bin"
STT_CONFIG_URL = "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json"
STT_VOCAB_URL = "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json"
STT_FILES_URLS = [
    (STT_MODEL_WEIGHTS_URL, STT_MODEL_WEIGHTS),
    (STT_CONFIG_URL, STT_CONFIG),
    (STT_VOCAB_URL, STT_VOCAB),
]

SENTIMENT_FOLDER = "./SentimentModel"
SENTIMENT_MODEL_WEIGHTS = "pytorch_model.bin"
SENTIMENT_VOCAB = "sentiment_vocab.json"
SENTIMENT_CONFIG = "config.json"
SENTIMENT_MODEL_WEIGHTS_URL = "https://huggingface.co/cardiffnlp/distilroberta-base-sentiment/resolve/main/pytorch_model.bin"
SENTIMENT_VOCAB_URL = "https://huggingface.co/cardiffnlp/distilroberta-base-sentiment/resolve/main/vocab.json"
SENTIMENT_CONFIG_URL = "https://huggingface.co/cardiffnlp/distilroberta-base-sentiment/resolve/main/config.json"
SENTIMENT_FILES_URLS = [
    (SENTIMENT_MODEL_WEIGHTS_URL, SENTIMENT_MODEL_WEIGHTS),
    (SENTIMENT_VOCAB_URL, SENTIMENT_VOCAB),
    (SENTIMENT_CONFIG_URL, SENTIMENT_CONFIG),
]

IMAGEGEN_FOLDER = "./ImageGenModel"
IMAGEGEN_MODEL_WEIGHTS = "diffusion_pytorch_model.bin"
IMAGEGEN_CONFIG = "config.json"
IMAGEGEN_MODEL_WEIGHTS_URL = "https://huggingface.co/stabilityai/sd-vae-ft-mse/resolve/main/diffusion_pytorch_model.bin"
IMAGEGEN_CONFIG_URL = "https://huggingface.co/stabilityai/sd-vae-ft-mse/resolve/main/config.json"
IMAGEGEN_FILES_URLS = [
    (IMAGEGEN_MODEL_WEIGHTS_URL, IMAGEGEN_MODEL_WEIGHTS),
    (IMAGEGEN_CONFIG_URL, IMAGEGEN_CONFIG),
]

LIPSYNC_FOLDER = "./LipSyncModel"
LIPSYNC_MODEL_WEIGHTS = "lipsync_expert.pth"
LIPSYNC_MODEL_WEIGHTS_URL = "https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/download.aspx?SourceUrl=%2Fpersonal%2Fradrabha%5Fm%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FWav2Lip%5FModels%2Flipsync%5Fexpert%2Epth"
LIPSYNC_FILES_URLS = [
    (LIPSYNC_MODEL_WEIGHTS_URL, LIPSYNC_MODEL_WEIGHTS),
]

WAV2LIP_FOLDER = "./Wav2LipModel"
WAV2LIP_MODEL_WEIGHTS = "wav2lip_gan.pth"
WAV2LIP_MODEL_WEIGHTS_URL = "https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/download.aspx?SourceUrl=%2Fpersonal%2Fradrabha%5Fm%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FWav2Lip%5FModels%2Fwav2lip%5Fgan%2Epth"
WAV2LIP_FILES_URLS = [
    (WAV2LIP_MODEL_WEIGHTS_URL, WAV2LIP_MODEL_WEIGHTS),
]

MUSICGEN_FOLDER = "./MusicGenModel"
MUSICGEN_MODEL_NAME = "melody"
MUSICGEN_MODEL_WEIGHTS = "pytorch_model.bin"
MUSICGEN_CONFIG = "config.json"
MUSICGEN_SAMPLE_RATE = 32000
MUSICGEN_DURATION = 8
MUSICGEN_MODEL_WEIGHTS_URL = "https://huggingface.co/facebook/musicgen-small/resolve/main/pytorch_model.bin"
MUSICGEN_CONFIG_URL = "https://huggingface.co/facebook/musicgen-small/resolve/main/config.json"
MUSICGEN_FILES_URLS = [
    (MUSICGEN_MODEL_WEIGHTS_URL, MUSICGEN_MODEL_WEIGHTS),
    (MUSICGEN_CONFIG_URL, MUSICGEN_CONFIG),
]

CODEGEN_SPM_URL = "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/spm.model"
CODEGEN_SPM = "spm.model"

TRANSLATION_SPM_URL = "https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt/resolve/main/sentencepiece.bpe.model"
TRANSLATION_SPM = "sentencepiece.bpe.model"

TEXT_TO_VIDEO_FOLDER = "./TextToVideoModel"
TEXT_TO_VIDEO_MODEL_WEIGHTS = "pytorch_model.bin"
TEXT_TO_VIDEO_CONFIG = "config.json"
TEXT_TO_VIDEO_VOCAB = "vocab.json"
TEXT_TO_VIDEO_MODEL_WEIGHTS_URL = "https://huggingface.co/Searchium-ai/clip4clip-webvid150k/resolve/main/pytorch_model.bin"
TEXT_TO_VIDEO_CONFIG_URL = "https://huggingface.co/Searchium-ai/clip4clip-webvid150k/resolve/main/config.json"
TEXT_TO_VIDEO_VOCAB_URL = "https://huggingface.co/Searchium-ai/clip4clip-webvid150k/resolve/main/vocab.json"
TEXT_TO_VIDEO_FILES_URLS = [
    (TEXT_TO_VIDEO_MODEL_WEIGHTS_URL, TEXT_TO_VIDEO_MODEL_WEIGHTS),
    (TEXT_TO_VIDEO_CONFIG_URL, TEXT_TO_VIDEO_CONFIG),
    (TEXT_TO_VIDEO_VOCAB_URL, TEXT_TO_VIDEO_VOCAB),
]

SUMMARIZATION_FOLDER = "./SummarizationModel"
SUMMARIZATION_MODEL_WEIGHTS = "pytorch_model.bin"
SUMMARIZATION_CONFIG = "config.json"
SUMMARIZATION_VOCAB = "vocab.json"
SUMMARIZATION_MODEL_WEIGHTS_URL = "https://huggingface.co/facebook/bart-large-cnn/resolve/main/pytorch_model.bin"
SUMMARIZATION_CONFIG_URL = "https://huggingface.co/facebook/bart-large-cnn/resolve/main/config.json"
SUMMARIZATION_VOCAB_URL = "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json"
SUMMARIZATION_FILES_URLS = [
    (SUMMARIZATION_MODEL_WEIGHTS_URL, SUMMARIZATION_MODEL_WEIGHTS),
    (SUMMARIZATION_CONFIG_URL, SUMMARIZATION_CONFIG),
    (SUMMARIZATION_VOCAB_URL, SUMMARIZATION_VOCAB),
]

IMAGE_TO_3D_FOLDER = "./ImageTo3DModel"
IMAGE_TO_3D_MODEL_WEIGHTS = "pytorch_model.bin"
IMAGE_TO_3D_CONFIG = "config.json"
IMAGE_TO_3D_MODEL_URL = "https://huggingface.co/zxhezexin/openlrm-obj-base-1.1/resolve/main/pytorch_model.bin"
IMAGE_TO_3D_CONFIG_URL = "https://huggingface.co/zxhezexin/openlrm-obj-base-1.1/resolve/main/config.json"
IMAGE_TO_3D_FILES_URLS = [
    (IMAGE_TO_3D_MODEL_URL, IMAGE_TO_3D_MODEL_WEIGHTS),
    (IMAGE_TO_3D_CONFIG_URL, IMAGE_TO_3D_CONFIG),
]


state_dict = None
enc = None
config = None
model = None
device = torch.device("cpu")
news_clf = None
tfidf_vectorizer = None
text_queue = queue.Queue()
categories = None
is_training = False
background_threads = []
feedback_queue = queue.Queue()
reasoning_queue = queue.Queue()
seen_responses = set()
tts_model = None
stt_model = None
sentiment_model = None
imagegen_model = None
lipsync_model = None
wav2lip_model = None
musicgen_model = None
translation_model = None
codegen_model = None
text_to_video_model = None
summarization_model = None
image_to_3d_model = None
tts_pipeline = False
stt_pipeline = False
sentiment_pipeline = False
imagegen_pipeline = False
translation_pipeline = False
codegen_pipeline = False
text_to_video_pipeline = False
summarization_pipeline = False
image_to_3d_pipeline = False
stt_tokenizer = None
stt_processor = None
sentiment_tokenizer = None
sentiment_model_instance = None
imagegen_vae = None
imagegen_unet = None
imagegen_scheduler = None
musicgen_model_instance = None
musicgen_tokenizer = None
musicgen_processor = None
translation_model_instance = None
translation_tokenizer = None
codegen_model_instance = None
codegen_tokenizer = None
codegen_sp = None
translation_sp = None
text_to_video_tokenizer = None
text_to_video_model_instance = None
summarization_tokenizer = None
summarization_model_instance = None
image_to_3d_config = None
image_to_3d_model_instance = None
app = Flask(__name__)
CORS(app)

from gpt2_pytorch import *
from tts_vits import *
from stt_wav2vec2 import *
from sentiment_roberta import *
from imagegen_vae_unet import *
from musicgen_torch import *
from translation_mbart import *
from codegen_torch import *
from text_to_video_clip4clip import *
from summarization_bart import *
from image_to_3d_openlrm import *

def download_file(url, filename):
    os.makedirs(os.path.dirname(filename), exist_ok=True) # Ensure directory exists
    if not os.path.exists(filename):
        print(f"Downloading {filename} from {url}...")
        try:
            wget.download(url, out=filename) # Specify output filename directly
            print(f"Downloaded {filename} successfully.")
        except Exception as e:
            print(f"Error downloading {filename}: {e}")

def ensure_folder_and_files_exist(folder_path, files_urls):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
        print(f"Folder '{folder_path}' created.")

    for url, filename in files_urls:
        filepath = os.path.join(folder_path, filename)
        download_file(url, filepath)

def ensure_single_file_exists(folder_path, file_url, filename):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
        print(f"Folder '{folder_path}' created.")
    filepath = os.path.join(folder_path, filename)
    download_file(file_url, filepath)


def ensure_gpt2_files_exist():
    ensure_folder_and_files_exist(GPT2_FOLDER, GPT2_FILES_URLS)

def ensure_translation_files_exist():
    ensure_folder_and_files_exist(TRANSLATION_FOLDER, TRANSLATION_MODEL_FILES_URLS)
    ensure_single_file_exists(TRANSLATION_FOLDER, TRANSLATION_SPM_URL, TRANSLATION_SPM)

def ensure_codegen_files_exist():
    ensure_folder_and_files_exist(CODEGEN_FOLDER, CODEGEN_FILES_URLS)
    ensure_single_file_exists(CODEGEN_FOLDER, CODEGEN_SPM_URL, CODEGEN_SPM)

def ensure_tts_files_exist():
    ensure_folder_and_files_exist(TTS_FOLDER, TTS_FILES_URLS)

def ensure_stt_files_exist():
    ensure_folder_and_files_exist(STT_FOLDER, STT_FILES_URLS)

def ensure_sentiment_files_exist():
    ensure_folder_and_files_exist(SENTIMENT_FOLDER, SENTIMENT_FILES_URLS)

def ensure_imagegen_files_exist():
    ensure_folder_and_files_exist(IMAGEGEN_FOLDER, IMAGEGEN_FILES_URLS)

def ensure_lipsync_files_exist():
    ensure_folder_and_files_exist(LIPSYNC_FOLDER, LIPSYNC_FILES_URLS)

def ensure_wav2lip_files_exist():
    ensure_folder_and_files_exist(WAV2LIP_FOLDER, WAV2LIP_FILES_URLS)

def ensure_musicgen_files_exist():
    ensure_folder_and_files_exist(MUSICGEN_FOLDER, MUSICGEN_FILES_URLS)

def ensure_text_to_video_files_exist():
    ensure_folder_and_files_exist(TEXT_TO_VIDEO_FOLDER, TEXT_TO_VIDEO_FILES_URLS)

def ensure_summarization_files_exist():
    ensure_folder_and_files_exist(SUMMARIZATION_FOLDER, SUMMARIZATION_FILES_URLS)

def ensure_image_to_3d_files_exist():
    ensure_folder_and_files_exist(IMAGE_TO_3D_FOLDER, IMAGE_TO_3D_FILES_URLS)

def ensure_all_model_files_exist(): # Define the function here, before it's called
    ensure_gpt2_files_exist()
    ensure_translation_files_exist()
    ensure_codegen_files_exist()
    ensure_tts_files_exist()
    ensure_stt_files_exist()
    ensure_sentiment_files_exist()
    ensure_imagegen_files_exist()
    ensure_lipsync_files_exist()
    ensure_wav2lip_files_exist()
    ensure_musicgen_files_exist()
    ensure_text_to_video_files_exist()
    ensure_summarization_files_exist()
    ensure_image_to_3d_files_exist()


@app.route("/", methods=['GET'])
async def html_handler():
    return html_code

@app.route("/generate_stream", methods=['GET'])
async def generate_stream_api():
    text_input = request.args.get("text")
    temperature = float(request.args.get("temp", 0.7))
    top_k = int(request.args.get("top_k", 40))
    top_p = float(request.args.get("top_p", 0.0))
    reppenalty = float(request.args.get("reppenalty", 1.2))
    return Response(generate_stream_generator(text_input, temperature, top_k, top_p, reppenalty), mimetype='text/event-stream')

@app.route("/tts", methods=['POST'])
def tts_api():
    data = request.get_json()
    text = data.get('text')
    if not text:
        return jsonify({"error": "Text is required"}), 400
    output_file = text_to_speech(text)
    if output_file == "Error generating speech.":
        return jsonify({"error": "TTS generation failed"}), 500
    return send_file(output_file, mimetype="audio/wav", as_attachment=True, download_name="output.wav")

@app.route("/stt", methods=['POST'])
def stt_api():
    if 'audio' not in request.files:
        return jsonify({"error": "Audio file is required"}), 400
    audio_file = request.files['audio']
    temp_audio_path = f"temp_audio_{uuid.uuid4()}.wav"
    audio_file.save(temp_audio_path)
    output_file = speech_to_text(temp_audio_path)
    os.remove(temp_audio_path)
    if output_file == "Error transcribing audio.":
        return jsonify({"error": "STT failed"}), 500
    return send_file(output_file, mimetype="text/plain", as_attachment=True, download_name="output.txt")

@app.route("/sentiment", methods=['POST'])
def sentiment_api():
    data = request.get_json()
    text = data.get('text')
    if not text:
        return jsonify({"error": "Text is required"}), 400
    output_file = analyze_sentiment(text)
    if output_file == "Sentiment model not initialized.":
        return jsonify({"error": "Sentiment analysis failed"}), 500
    return jsonify(output_file)

@app.route("/imagegen", methods=['POST'])
def imagegen_api():
    data = request.get_json()
    prompt = data.get('prompt')
    if not prompt:
        return jsonify({"error": "Prompt is required"}), 400
    output_file = generate_image(prompt)
    if output_file == "Error generating image.":
        return jsonify({"error": "Image generation failed"}), 500
    image_io = BytesIO()
    output_file.save(image_io, 'PNG')
    image_io.seek(0)
    return send_file(image_io, mimetype='image/png', as_attachment=True, download_name="output.png")

@app.route("/musicgen", methods=['POST'])
def musicgen_api():
    data = request.get_json()
    prompt = data.get('prompt')
    if not prompt:
        return jsonify({"error": "Prompt is required"}), 400
    output_file = generate_music(prompt)
    if output_file == "Error generating music.":
        return jsonify({"error": "Music generation failed"}), 500
    return send_file(output_file, mimetype="audio/wav", as_attachment=True, download_name="output.wav")

@app.route("/translation", methods=['POST'])
def translation_api():
    data = request.get_json()
    text = data.get('text')
    target_lang = data.get('target_lang', 'es')
    source_lang = data.get('source_lang', 'en')
    if not text:
        return jsonify({"error": "Text is required"}), 400
    output_file = perform_translation(text, target_language_code=f'{target_lang}_XX', source_language_code=f'{source_lang}_XX')
    if output_file == "Error during translation.":
        return jsonify({"error": "Translation failed"}), 500
    return send_file(output_file, mimetype="text/plain", as_attachment=True, download_name="output_translation.txt")

@app.route("/codegen", methods=['POST'])
def codegen_api():
    data = request.get_json()
    prompt = data.get('prompt')
    if not prompt:
        return jsonify({"error": "Prompt is required"}), 400
    output_file = generate_code(prompt)
    if output_file == "Error generating code.":
        return jsonify({"error": "Code generation failed"}), 500
    return send_file(output_file, mimetype="text/x-python", as_attachment=True, download_name="output.py")

@app.route("/text_to_video", methods=['POST'])
def text_to_video_api():
    data = request.get_json()
    prompt = data.get('prompt')
    if not prompt:
        return jsonify({"error": "Prompt is required"}), 400
    output_file = text_to_video(prompt)
    if output_file == "Error generating video representation.":
        return jsonify({"error": "Text to video failed"}), 500
    return send_file(output_file, mimetype="application/octet-stream", as_attachment=True, download_name="output_video_representation.pt")

@app.route("/summarization", methods=['POST'])
def summarization_api():
    data = request.get_json()
    text = data.get('text')
    if not text:
        return jsonify({"error": "Text is required"}), 400
    output_file = summarize_text(text)
    if output_file == "Error during summarization.":
        return jsonify({"error": "Summarization failed"}), 500
    return send_file(output_file, mimetype="text/plain", as_attachment=True, download_name="output_summary.txt")

@app.route("/image_to_3d", methods=['POST'])
def image_to_3d_api():
    if 'image' not in request.files:
        return jsonify({"error": "Image file is required"}), 400
    image_file = request.files['image']
    temp_image_path = f"temp_image_{uuid.uuid4()}.png"
    image_file.save(temp_image_path)
    output_file = image_to_3d(temp_image_path)
    os.remove(temp_image_path)
    if output_file == "Error converting image to 3D.":
        return jsonify({"error": "Image to 3D failed"}), 500
    return send_file(output_file, mimetype="model/obj", as_attachment=True, download_name="output_3d.obj")


async def main():
    global background_threads, response_queue
    logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
    response_queue = queue.Queue()

    ensure_all_model_files_exist()
    initialize_model()
    await initialize_sklearn()
    initialize_tts_model()
    initialize_stt_model()
    initialize_sentiment_model()
    initialize_imagegen_model()
    ensure_lipsync_files_exist()
    ensure_wav2lip_files_exist()
    initialize_musicgen_model()
    initialize_translation_model()
    initialize_codegen_model()
    initialize_text_to_video_model()
    initialize_summarization_model()
    initialize_image_to_3d_model()

    background_threads.append(threading.Thread(target=generate_and_queue_text, args=('en',), daemon=True))
    background_threads.append(threading.Thread(target=generate_and_queue_text, args=('es',), daemon=True))
    background_threads.append(threading.Thread(target=background_training, daemon=True))
    for thread in background_threads:
        thread.start()

    asyncio.create_task(background_reasoning_queue())

    app.run(host="127.0.0.1", port=7860, debug=False)

if __name__ == '__main__':
    asyncio.run(main())