File size: 6,138 Bytes
5c6427d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f4b8e0
 
 
 
 
 
 
 
 
 
5c6427d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f4b8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6427d
 
 
 
 
 
 
64f1def
 
 
 
 
 
 
 
 
 
b88b332
 
64f1def
 
 
 
9f9ca81
64f1def
 
 
 
 
 
 
2f4b8e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import re
import copy
import secrets
from pathlib import Path

# Constants
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"

# Initialize model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat-Int4", device_map="auto", trust_remote_code=True).eval()

def format_text(text):
    """Format text for rendering in the chat UI."""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text

def get_chat_response(chatbot, task_history):
    """Generate a response using the model."""
    chat_query = chatbot[-1][0]
    query = task_history[-1][0]
    history_cp = copy.deepcopy(task_history)
    full_response = ""

    history_filter = []
    pic_idx = 1
    pre = ""
    for i, (q, a) in enumerate(history_cp):
        if isinstance(q, (tuple, list)):
            q = f'Picture {pic_idx}: <img>{q[0]}</img>'
            pre += q + '\n'
            pic_idx += 1
        else:
            pre += q
            history_filter.append((pre, a))
            pre = ""
    history, message = history_filter[:-1], history_filter[-1][0]
    
    inputs = tokenizer.encode_plus(message, return_tensors='pt')
    outputs = model.generate(inputs['input_ids'], max_length=150, num_beams=4, length_penalty=2.0, early_stopping=True)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    task_history.append((message, response))
    chatbot.append((format_text(message), format_text(response)))

    return chatbot, task_history


def handle_text_input(history, task_history, text):
    """Handle text input from the user."""
    task_text = text
    if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
        task_text = text[:-1]
    history = history + [(format_text(text), None)]
    task_history = task_history + [(task_text, None)]
    return history, task_history, ""

def handle_file_upload(history, task_history, file):
    """Handle file upload from the user."""
    history = history + [((file.name,), None)]
    task_history = task_history + [((file.name,), None)]
    return history, task_history

def clear_input():
    """Clear the user input."""
    return gr.update(value="")

def clear_history(task_history):
    """Clear the chat history."""
    task_history.clear()
    return []

def handle_regeneration(chatbot, task_history):
    """Handle the regeneration of the last response."""
    print("Regenerate clicked")
    print("Before:", task_history, chatbot)
    if not task_history:
        return chatbot
    item = task_history[-1]
    if item[1] is None:
        return chatbot
    task_history[-1] = (item[0], None)
    chatbot_item = chatbot.pop(-1)
    if chatbot_item[0] is None:
        chatbot[-1] = (chatbot[-1][0], None)
    else:
        chatbot.append((chatbot_item[0], None))
    print("After:", task_history, chatbot)
    return get_chat_response(chatbot, task_history)

chatbot = []
task_history = []

def main_function(text, image):
    global chatbot, task_history
    if text:
        chatbot, task_history = handle_text_input(chatbot, task_history, text)
    if image:
        chatbot, task_history = handle_file_upload(chatbot, task_history, image)
    chatbot, task_history = get_chat_response(chatbot, task_history)
    formatted_response = chatbot[-1][1]  # Get the latest response from the chatbot
    return formatted_response

def clear_history_fn():
    global chatbot, task_history
    chatbot.clear()
    task_history.clear()
    return "History cleared."

# Custom CSS
css = '''
    .gradio-container {
        max-width: 800px !important;
    }
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown("# Qwen-VL-Chat Bot")
    gr.Markdown(
        "## Developed by Keyvan Hardani (Keyvven on [Twitter](https://twitter.com/Keyvven))\n"
        "Special thanks to [@Artificialguybr](https://twitter.com/artificialguybr) for the inspiration from his code.\n"
        "### Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud\n"
    )
    chat_interface = gr.Interface(
        fn=main_function,
        inputs=[
            gr.components.Textbox(lines=2, label='Input'),  # Update here
            gr.components.Image(type='filepath', label='Upload Image')  # Update here
        ],
        outputs='text',
        live=True,
        layout='vertical',
        theme=None,
        css=css
    ).launch()
    gr.Markdown("### Key Features:\n- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.\n- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.\n- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.")
    
    demo.add_button("🧹 Clear History", clear_history_fn)

demo.launch(share=True)