File size: 15,212 Bytes
b9a0194
 
 
 
 
 
 
 
 
 
 
 
 
f93a84b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a0194
 
 
 
 
 
 
 
 
 
 
 
 
 
f93a84b
 
b9a0194
 
 
 
f93a84b
b9a0194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f93a84b
 
b9a0194
 
 
f93a84b
 
 
 
b9a0194
 
 
 
 
 
 
 
 
 
 
 
f93a84b
b9a0194
 
f93a84b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a0194
 
f93a84b
 
 
 
 
b9a0194
f93a84b
 
 
 
 
 
 
 
 
 
 
98e951a
 
c30aed0
f93a84b
 
 
bbf6763
789f027
f93a84b
c30aed0
f93a84b
 
 
 
 
 
b106c57
b9a0194
f93a84b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors
import requests
from cachetools import cached, TTLCache


def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)


def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text


def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page - 1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list


def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []

    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i + word_length]
            if (i + word_length) > len(words) and (len(chunk) < word_length) and (
                    len(text_toks) != (idx + 1)):
                text_toks[idx + 1] = chunk + text_toks[idx + 1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[Page no. {idx + start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks


class SemanticSearch:

    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False

    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True

    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]

        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors

    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i + batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings


def load_recommender(path, start_page=1):
    global recommender
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    return 'Corpus Loaded.'


def generate_text(openAI_key, prompt, model="gpt-3.5-turbo"):
    openai.api_key = openAI_key
    temperature = 0.7
    max_tokens = 256
    top_p = 1
    frequency_penalty = 0
    presence_penalty = 0

    if model == "text-davinci-003":
        completions = openai.Completion.create(
            engine=model,
            prompt=prompt,
            max_tokens=max_tokens,
            n=1,
            stop=None,
            temperature=temperature,
        )
        message = completions.choices[0].text
    else:
        message = openai.ChatCompletion.create(
            model=model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "assistant", "content": "Here is some initial assistant message."},
                {"role": "user", "content": prompt}
            ],
            temperature=.3,
            max_tokens=max_tokens,
            top_p=top_p,
            frequency_penalty=frequency_penalty,
            presence_penalty=presence_penalty,
        ).choices[0].message['content']
    return message


def generate_answer(question, openAI_key, model):
    topn_chunks = recommender(question)
    prompt = 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'

    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. " \
              "Cite each reference using [ Page Number] notation. " \
              "Only answer what is asked. The answer should be short and concise. \n\nQuery: "

    prompt += f"{question}\nAnswer:"
    answer = generate_text(openAI_key, prompt, model)
    return answer


def question_answer(chat_history, url, file, question, openAI_key, model):
    try:
        if openAI_key.strip() == '':
            return '[ERROR]: Please enter your Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
        if url.strip() == '' and file is None:
            return '[ERROR]: Both URL and PDF is empty. Provide at least one.'
        if url.strip() != '' and file is not None:
            return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'
        if model is None or model == '':
            return '[ERROR]: You have not selected any model. Please choose an LLM model.'
        if url.strip() != '':
            glob_url = url
            download_pdf(glob_url, 'corpus.pdf')
            load_recommender('corpus.pdf')
        else:
            old_file_name = file.name
            file_name = file.name
            file_name = file_name[:-12] + file_name[-4:]
            os.rename(old_file_name, file_name)
            load_recommender(file_name)
        if question.strip() == '':
            return '[ERROR]: Question field is empty'
        if model == "text-davinci-003" or model == "gpt-4" or model == "gpt-4-32k":
            answer = generate_answer_text_davinci_003(question, openAI_key)
        else:
            answer = generate_answer(question, openAI_key, model)
        chat_history.append([question, answer])
        return chat_history
    except openai.error.InvalidRequestError as e:
        return f'[ERROR]: Either you do not have access to GPT4 or you have exhausted your quota!'


def generate_text_text_davinci_003(openAI_key, prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message


def generate_answer_text_davinci_003(question, openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'

    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. " \
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning). " \
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects " \
              "with the same name, create separate answers for each. Only include information found in the results and " \
              "don't add any additional information. Make sure the answer is correct and don't output false content. " \
              "If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier " \
              "search results which has nothing to do with the question. Only answer what is asked. The " \
              "answer should be short and concise. \n\nQuery: {question}\nAnswer: "

    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text_text_davinci_003(openAI_key, prompt, "text-davinci-003")
    return answer


# pre-defined questions
questions = [
    "What did the study investigate?",
    "Can you provide a summary of this paper?",
    "what are the methodologies used in this study?",
    "what are the data intervals used in this study? Give me the start dates and end dates?",
    "what are the main limitations of this study?",
    "what are the main shortcomings of this study?",
    "what are the main findings of the study?",
    "what are the main results of the study?",
    "what are the main contributions of this study?",
    "what is the conclusion of this paper?",
    "what are the input features used in this study?",
    "what is the dependent variable in this study?",
]

# =============================================================================
CACHE_TIME = 60 * 60 * 6  # 6 hours


def parse_arxiv_id_from_paper_url(url):
    return url.split("/")[-1]


@cached(cache=TTLCache(maxsize=500, ttl=CACHE_TIME))
def get_recommendations_from_semantic_scholar(semantic_scholar_id: str):
    try:
        r = requests.post(
            "https://api.semanticscholar.org/recommendations/v1/papers/",
            json={
                "positivePaperIds": [semantic_scholar_id],
            },
            params={"fields": "externalIds,title,year", "limit": 10},
        )
        return r.json()["recommendedPapers"]
    except KeyError as e:
        raise gr.Error(
            "Error getting recommendations, if this is a new paper it may not yet have"
            " been indexed by Semantic Scholar."
        ) from e


def filter_recommendations(recommendations, max_paper_count=5):
    # include only arxiv papers
    arxiv_paper = [
        r for r in recommendations if r["externalIds"].get("ArXiv", None) is not None
    ]
    if len(arxiv_paper) > max_paper_count:
        arxiv_paper = arxiv_paper[:max_paper_count]
    return arxiv_paper


@cached(cache=TTLCache(maxsize=500, ttl=CACHE_TIME))
def get_paper_title_from_arxiv_id(arxiv_id):
    try:
        return requests.get(f"https://huggingface.co/api/papers/{arxiv_id}").json()[
            "title"
        ]
    except Exception as e:
        print(f"Error getting paper title for {arxiv_id}: {e}")
        raise gr.Error("Error getting paper title for {arxiv_id}: {e}") from e


def format_recommendation_into_markdown(arxiv_id, recommendations):
    # title = get_paper_title_from_arxiv_id(arxiv_id)
    # url = f"https://huggingface.co/papers/{arxiv_id}"
    # comment = f"Recommended papers for [{title}]({url})\n\n"
    comment = "The following papers were recommended by the Semantic Scholar API \n\n"
    for r in recommendations:
        hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}"
        comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n"
    return comment


def return_recommendations(url):
    arxiv_id = parse_arxiv_id_from_paper_url(url)
    recommendations = get_recommendations_from_semantic_scholar(f"ArXiv:{arxiv_id}")
    filtered_recommendations = filter_recommendations(recommendations)
    return format_recommendation_into_markdown(arxiv_id, filtered_recommendations)

# ==============================================================================================


recommender = SemanticSearch()

# title = 'PDF GPT Turbo'
# description = """ PDF GPT Turbo allows you to chat with your PDF files. It uses Google's Universal Sentence Encoder with Deep averaging network (DAN) to give hallucination free response by improving the embedding quality of OpenAI. It cites the page number in square brackets([Page No.]) and shows where the information is located, adding credibility to the responses."""
#
# with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo:
#     gr.Markdown(f'<center><h3>{title}</h3></center>')
#     gr.Markdown(description)
#
#     with gr.Row():
#         with gr.Group():
#             gr.Markdown(
#                 f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
#             with gr.Accordion("API Key"):
#                 openAI_key = gr.Textbox(label='Enter your OpenAI API key here', password=True)
#                 url = gr.Textbox(label='Enter PDF URL here   (Example: https://arxiv.org/pdf/1706.03762.pdf )')
#                 gr.Markdown("<center><h4>OR<h4></center>")
#                 file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
#             question = gr.Textbox(label='Enter your question here')
#             gr.Examples(
#                 [[q] for q in questions],
#                 inputs=[question],
#                 label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box, then press Enter!",
#             )
#             model = gr.Radio([
#                 'gpt-3.5-turbo',
#                 'gpt-3.5-turbo-16k',
#                 'gpt-3.5-turbo-0613',
#                 'gpt-3.5-turbo-16k-0613',
#                 'text-davinci-003',
#                 'gpt-4',
#                 'gpt-4-32k'
#             ], label='Select Model', default='gpt-3.5-turbo')
#             btn = gr.Button(value='Submit')
#
#             btn.style(full_width=True)
#
#         with gr.Group():
#             chatbot = gr.Chatbot(placeholder="Chat History", label="Chat History", lines=50, elem_id="chatbot")
#
#     #
#     # Bind the click event of the button to the question_answer function
#     btn.click(
#         question_answer,
#         inputs=[chatbot, url, file, question, openAI_key, model],
#         outputs=[chatbot],
#     )
#
# demo.launch()

# 第一个文件的内容
title_1 = "Semantic Scholar Paper Recommender"
description_1 = (
    "Paste a link to a paper on Hugging Face Papers and get recommendations for similar"
    " papers from Semantic Scholar. **Note**: Some papers may not have recommendations"
    " yet if they are new or have not been indexed by Semantic Scholar."
)
examples_1 = [
    "https://huggingface.co/papers/2309.12307",
    "https://huggingface.co/papers/2211.10086",
]

# 第二个文件的内容
title_2 = "PDF GPT Turbo"
description_2 = (
    "PDF GPT Turbo allows you to chat with your PDF files. It uses Google's Universal Sentence Encoder with Deep averaging network (DAN) to give hallucination free response by improving the embedding quality of OpenAI. It cites the page number in square brackets([Page No.]) and shows where the information is located, adding credibility to the responses."
)

# 创建第一个界面
interface_1 = gr.Interface(
    return_recommendations,
    gr.Textbox(lines=1),
    gr.Markdown(),
    examples=examples_1,
    title=title_1,
    description=description_1,
)

interface_2 = gr.Interface(
    fn=question_answer,
    inputs=[
        gr.Chatbot(),
        gr.Textbox(label='Enter PDF URL here   (Example: https://arxiv.org/pdf/1706.03762.pdf )'),
        gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf']),
        gr.Textbox(label='Enter your question here'),
        gr.Textbox(label='Enter your OpenAI API key here'),
        gr.Radio(['gpt-3.5-turbo', 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'text-davinci-003', 'gpt-4', 'gpt-4-32k'], label='Select Model'),
    ],
    outputs=[gr.Chatbot()],
    examples=[],
    title=title_2,
    description=description_2,
)

# 创建带有两个选项卡的界面
tabbed_interface = gr.Interface.Grid([[interface_1], [interface_2]])

# 启动界面
tabbed_interface.launch()