File size: 6,606 Bytes
9d0a4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import copy
import pdb
from typing import Optional

import torch
import torch.nn.functional as F
from torch import nn, Tensor

def mask_logits(inputs, mask, mask_value=-1e30):
    mask = mask.type(torch.float32)
    return inputs + (1.0 - mask) * mask_value


class Transformer(nn.Module):

    def __init__(self, d_model=512, nhead=8, num_encoder_layers=4,
                 num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, droppath=0.1,
                 activation="gelu", normalize_before=False,  # False as default
                 return_intermediate_dec=False):
        super().__init__()

        encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
                                                dropout, droppath, activation, normalize_before)
        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, src, mask, pos_embed):
        """
        Args:
            src: (batch_size, L, d)
            mask: (batch_size, L)
            query_embed: (#queries, d) -> my imple (batch_size, d) and #queries=1
            pos_embed: (batch_size, L, d) the same as src

        Returns:

        """
        # flatten NxCxHxW to HWxNxC
        src = src.permute(1, 0, 2)  # (L, batch_size, d)
        pos_embed = pos_embed.permute(1, 0, 2)   # (L, batch_size, d)

        memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
        memory = memory.transpose(0, 1)

        return memory


class TransformerEncoder(nn.Module):
    def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate

    def forward(self, src,
                mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None):
        output = src

        intermediate = []

        for layer in self.layers:
            output = layer(output, src_mask=mask,
                           src_key_padding_mask=src_key_padding_mask, pos=pos)
            if self.return_intermediate:
                intermediate.append(output)

        if self.norm is not None:
            output = self.norm(output)

        if self.return_intermediate:
            return torch.stack(intermediate)

        return output

class TransformerEncoderLayer(nn.Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, droppath=0.1,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        # self.dropout1 = nn.Dropout(dropout)
        # self.dropout2 = nn.Dropout(dropout)
        self.droppath1 = DropPath(droppath)
        self.droppath2 = DropPath(droppath)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self,
                     src,
                     src_mask: Optional[Tensor] = None,
                     src_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(src, pos)
        src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
        # src2 = self.self_attn_eff(q=q, k=k, v=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
        src = src + self.droppath1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.activation(self.linear1(src)))
        # src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.droppath2(src2)
        src = self.norm2(src)
        return src

    def forward(self, src,
                src_mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
        return self.forward_post(src, src_mask, src_key_padding_mask, pos)


def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


def build_transformer(args):
    return Transformer(
        d_model=args.hidden_dim,
        dropout=args.dropout,
        droppath=args.droppath,
        nhead=args.nheads,
        dim_feedforward=args.dim_feedforward,
        num_encoder_layers=args.enc_layers,
        num_decoder_layers=args.dec_layers,
        normalize_before=args.pre_norm,
        return_intermediate_dec=True,
    )

def drop_path(x, drop_prob=0.0, training=False):
    """
    Stochastic Depth per sample.
    """
    if drop_prob == 0.0 or not training:
        return x

    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)
    mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    mask.floor_()
    x = x.div(keep_prob) * mask

    return x


class DropPath(nn.Module):
    """
    Drop paths per sample (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()

        self.drop_prob = drop_prob

    def forward(self, x):
        x = x.permute(1, 0, 2)
        res = drop_path(x, self.drop_prob, self.training)
        return res.permute(1, 0, 2)
    #    return drop_path(x, self.drop_prob, self.training)

def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")