File size: 19,179 Bytes
9d0a4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import pdb
import torch
import torch.nn.functional as F
from torch import nn
import numpy as np

from model.transformer_encoder import build_transformer
from model.matcher import build_matcher
from model.position_encoding import build_position_encoding
from utils.span_utils import generalized_temporal_iou, span_cxw_to_xx

def init_weights(module):
    if isinstance(module, (nn.Linear, nn.Embedding)):
        module.weight.data.normal_(mean=0.0, std=0.02)
    elif isinstance(module, nn.LayerNorm):
        module.bias.data.zero_()
        module.weight.data.fill_(1.0)

    if isinstance(module, nn.Linear) and module.bias is not None:
        module.bias.data.zero_()

def mask_logits(inputs, mask, mask_value=-1e30):
    mask = mask.type(torch.float32)
    return inputs + (1.0 - mask) * mask_value

def sim_matrix(a, b, eps=1e-8):
    """
    added eps for numerical stability
    """
    a_n, b_n = a.norm(dim=1)[:, None], b.norm(dim=1)[:, None]
    a_norm = a / torch.max(a_n, eps * torch.ones_like(a_n))
    b_norm = b / torch.max(b_n, eps * torch.ones_like(b_n))
    sim_mt = torch.mm(a_norm, b_norm.transpose(0, 1))
    return sim_mt

class WeightedPool(nn.Module):
    def __init__(self, dim):
        super(WeightedPool, self).__init__()
        weight = torch.empty(dim, 1)
        nn.init.xavier_uniform_(weight)
        self.weight = nn.Parameter(weight, requires_grad=True)

    def forward(self, x, mask):
        alpha = torch.tensordot(x, self.weight, dims=1)  # shape = (batch_size, seq_length, 1)
        alpha = mask_logits(alpha, mask=mask.unsqueeze(2))
        alphas = nn.Softmax(dim=1)(alpha)
        pooled_x = torch.matmul(x.transpose(1, 2), alphas)  # (batch_size, dim, 1)
        pooled_x = pooled_x.squeeze(2)
        return pooled_x

class Model(nn.Module):
    """ This is the UniVTG module that performs moment localization. """

    def __init__(self, transformer, position_embed, txt_position_embed, txt_dim, vid_dim,
                 input_dropout, aux_loss=False,
                 max_v_l=75, span_loss_type="l1", use_txt_pos=False, n_input_proj=2):
        """ Initializes the model.
        Parameters:
            transformer: torch module of the transformer architecture. See transformer.py
            position_embed: torch module of the position_embedding, See position_encoding.py
            txt_position_embed: position_embedding for text
            txt_dim: int, text query input dimension
            vid_dim: int, video feature input dimension
            max_v_l: int, maximum #clips in videos
            span_loss_type: str, one of [l1, ce]
                l1: (center-x, width) regression.
                ce: (st_idx, ed_idx) classification.
            # foreground_thd: float, intersection over prediction >= foreground_thd: labeled as foreground
            # background_thd: float, intersection over prediction <= background_thd: labeled background
        """
        super().__init__()
        self.transformer = transformer
        self.position_embed = position_embed
        self.txt_position_embed = txt_position_embed
        hidden_dim = transformer.d_model
        self.span_loss_type = span_loss_type
        self.max_v_l = max_v_l
        span_pred_dim = 2 if span_loss_type == "l1" else max_v_l * 2

        self.token_type_embeddings = nn.Embedding(2, hidden_dim)
        self.token_type_embeddings.apply(init_weights)

        # Conv projector
        self.span_embed = Conv(hidden_dim, hidden_dim, span_pred_dim, 3, kernel_size=3)
        self.class_embed = Conv(hidden_dim, hidden_dim, 1, 3, kernel_size=3)  # 0: background, 1: foreground

        self.use_txt_pos = use_txt_pos
        self.n_input_proj = n_input_proj
        relu_args = [True] * 3
        relu_args[n_input_proj-1] = False
        self.input_txt_proj = nn.Sequential(*[
            LinearLayer(txt_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2])
        ][:n_input_proj])
        self.input_vid_proj = nn.Sequential(*[
            LinearLayer(vid_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]),
            LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2])
        ][:n_input_proj])

        # MLP Projector
        self.weightedpool = WeightedPool(hidden_dim)

    def forward(self, src_txt, src_txt_mask, src_vid, src_vid_mask, src_cls=None, src_cls_mask=None):
        bs = src_vid.shape[0]
        src_vid = self.input_vid_proj(src_vid)
        src_txt = self.input_txt_proj(src_txt)
        if src_cls is not None:
            src_cls = self.input_txt_proj(src_cls)

        # type token.
        src_vid = src_vid + self.token_type_embeddings(torch.full_like(src_vid_mask.long(), 1))
        src_txt = src_txt + self.token_type_embeddings(torch.zeros_like(src_txt_mask.long()))
        if src_cls is not None:
            src_cls = src_cls + self.token_type_embeddings(torch.zeros_like(src_cls_mask.long()))

        src = torch.cat([src_vid, src_txt], dim=1)  # (bsz, L_vid+L_txt, d)
        mask = torch.cat([src_vid_mask, src_txt_mask], dim=1).bool()  # (bsz, L_vid+L_txt)

        pos_vid = self.position_embed(src_vid, src_vid_mask)  # (bsz, L_vid, d)
        pos_txt = self.txt_position_embed(src_txt) if self.use_txt_pos else torch.zeros_like(src_txt)  # (bsz, L_txt, d)
        pos = torch.cat([pos_vid, pos_txt], dim=1)

        memory = self.transformer(src, ~mask, pos)
        vid_mem = memory[:, :src_vid.shape[1], :]  # (bsz, L_vid, d)

        outputs_class = self.class_embed(vid_mem).sigmoid()  # (#layers, batch_size, #queries, #classes)
        outputs_coord = self.span_embed(vid_mem)  # (#layers, bsz, #queries, 2 or max_v_l * 2)

        if self.span_loss_type == "l1":
            outputs_coord = outputs_coord.sigmoid()
            idx_mask = torch.tensor((-1, 1)).unsqueeze(0).unsqueeze(0).cuda()
            idx_mask = idx_mask.repeat(outputs_coord.shape[0], outputs_coord.shape[1], 1)
            outputs_coord = outputs_coord * idx_mask
        else:
            raise NotImplementedError

        out = {'pred_logits': outputs_class, 'pred_spans': outputs_coord,
               'src_vid_mask': src_vid_mask}

        vid_mem_proj = src_vid

        # word-level -> sentence-level
        txt_mem_proj = self.weightedpool(src_txt, src_txt_mask).unsqueeze(1)
        sim = F.cosine_similarity(vid_mem_proj, txt_mem_proj, dim=-1) + (src_vid_mask + 1e-45).log()

        out["vid_mem_proj"] = vid_mem_proj
        out["txt_mem_proj"] = txt_mem_proj
        if src_cls is not None:
            cls_mem_proj = self.weightedpool(src_cls, src_cls_mask)
            out["cls_mem_proj"] = cls_mem_proj
        out["saliency_scores"] = sim
        return out

class SetCriterion(nn.Module):
    """ This class computes the loss for DETR.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """

    def __init__(self, matcher, weight_dict, eos_coef, losses, temperature, span_loss_type, max_v_l,
                 saliency_margin=1):
        """ Create the criterion.
        Parameters:
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            eos_coef: relative classification weight applied to the no-object category
            losses: list of all the losses to be applied. See get_loss for list of available losses.
            temperature: float, temperature for NCE loss
            span_loss_type: str, [l1, ce]
            max_v_l: int,
            saliency_margin: float
        """
        super().__init__()
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.losses = losses
        self.temperature = temperature
        self.span_loss_type = span_loss_type
        self.max_v_l = max_v_l
        self.saliency_margin = saliency_margin
        self.temperature = 0.07

        # foreground and background classification
        self.foreground_label = 0
        self.background_label = 1
        self.eos_coef = eos_coef
        empty_weight = torch.ones(2)
        empty_weight[-1] = self.eos_coef  # lower weight for background (index 1, foreground index 0)
        self.register_buffer('empty_weight', empty_weight)

    def loss_spans(self, outputs, targets, indices):
        assert 'pred_spans' in outputs

        start_spans = targets['timestamp']
        pred_spans = outputs['pred_spans']
        src_spans = start_spans + pred_spans
        gt_spans = targets['span_labels_nn']

        mask =  targets['timestamp_mask'].bool()
        mask_full = targets['timestamp_mask'].unsqueeze(2).repeat(1, 1, 2)
        mask_valid =  targets['timestamp_window'].bool()
        mask_valid_full = targets['timestamp_window'].unsqueeze(2).repeat(1, 1, 2)

        loss_span = F.smooth_l1_loss(src_spans, gt_spans, reduction='none') * mask_valid_full
        loss_giou = 1 - torch.diag(generalized_temporal_iou(src_spans[mask_valid], gt_spans[mask_valid]))

        losses = {}
        losses['loss_b'] = loss_span.sum() / mask_valid.sum()
        losses['loss_g'] = loss_giou.mean()
        return losses

    def loss_labels(self, outputs, targets, indices, log=True):
        src_logits = outputs['pred_logits'].squeeze(-1)  # (batch_size, #queries, #classes=2)
        mask = targets['timestamp_mask'].bool()
        mask_valid = targets['timestamp_window'].bool()
        target_classes = torch.full(src_logits.shape[:2], 0, dtype=torch.int64, device=src_logits.device)  # (batch_size, #queries)
        target_classes[mask_valid] = 1
        # target_classes = targets['timestamp_window']  # soft cls.
        target_classes.float()
        # pdb.set_trace()

        weights = torch.zeros_like(target_classes).float()
        weights[mask] = self.empty_weight[1]
        weights[mask_valid] = self.empty_weight[0]

        # pdb.set_trace()
        loss_ce = F.binary_cross_entropy(src_logits, target_classes.float(), weight=weights,  reduction="none") * mask
        return {"loss_f": loss_ce.sum() / mask.sum()}
        # return {"loss_f": loss_ce.sum() / (1 + mask_valid.sum())}

    def loss_saliency(self, outputs, targets, indices, log=True):
        """higher scores for positive clips"""
        if "saliency_pos_labels" not in targets:
            return {"loss_s_inter": 0., "loss_s_intra": 0.}
        saliency_scores = targets["saliency_scores"]
        if saliency_scores.sum() == 0:
            return {"loss_s_inter": 0., "loss_s_intra": 0.}

        # * inter-vid mode
        vid_mem_proj = outputs["vid_mem_proj"]
        pos_indices = targets["saliency_pos_labels"][:,0].long()  # (N, #pairs)
        batch_indices = torch.arange(len(vid_mem_proj)).to(vid_mem_proj.device)

        vid_feats = vid_mem_proj[batch_indices, pos_indices]
        txt_feats = outputs["txt_mem_proj"].squeeze(1)
        sim = sim_matrix(vid_feats, txt_feats)

        i_logsm = F.log_softmax(sim / self.temperature, dim=1)
        j_logsm = F.log_softmax(sim.t() /self.temperature, dim=1)

        # sum over positives
        idiag = torch.diag(i_logsm)
        jdiag = torch.diag(j_logsm)
        loss_i = idiag.sum() / len(idiag)
        loss_j = jdiag.sum() / len(jdiag)

        loss_saliency_inter = - loss_i - loss_j

        # * intra-vid mode
        mask = targets['timestamp_mask']
        selected_scores = saliency_scores[batch_indices, pos_indices].unsqueeze(-1)
        neg_indices_in = (saliency_scores < selected_scores)
        neg_indices_in[batch_indices, pos_indices] = True
        mask_invalid = neg_indices_in * mask.bool()

        sim_in = F.cosine_similarity(vid_mem_proj, txt_feats.unsqueeze(1), dim=-1)
        sim_in = sim_in + (mask_invalid + 1e-45).log()
        logsm_in_i = F.log_softmax(sim_in / self.temperature, dim=1)
        logsm_in_j = F.log_softmax(sim_in.t() / self.temperature, dim=1)

        pos_logsm_in_i = logsm_in_i[batch_indices, pos_indices]
        pos_logsm_in_j = logsm_in_j[pos_indices, batch_indices]
        loss_in_i = pos_logsm_in_i.sum() / len(pos_logsm_in_i)
        loss_in_j = pos_logsm_in_j.sum() / len(pos_logsm_in_j)

        loss_saliency_intra = - loss_in_i - loss_in_j

        return {"loss_s_inter": loss_saliency_inter, "loss_s_intra": loss_saliency_intra}

    def loss_saliency_cls(self, outputs, targets, indices, log=True):
        """higher scores for positive clips"""
        if "saliency_pos_labels" not in targets:
            return {"loss_s_inter": 0., "loss_s_intra": 0.}
        saliency_scores = targets["saliency_scores"]
        if saliency_scores.sum() == 0:
            return {"loss_s_inter": 0., "loss_s_intra": 0.}

        # * inter-vid mode
        vid_mem_proj = outputs["vid_mem_proj"]
        pos_indices = targets["saliency_pos_labels"][:,0].long()  # (N, #pairs)
        batch_indices = torch.arange(len(vid_mem_proj)).to(vid_mem_proj.device)

        vid_feats = vid_mem_proj[batch_indices, pos_indices]
        txt_feats = outputs["txt_mem_proj"].squeeze(1)
        sim = sim_matrix(vid_feats, txt_feats)

        i_logsm = F.log_softmax(sim / self.temperature, dim=1)
        j_logsm = F.log_softmax(sim.t() /self.temperature, dim=1)

        # sum over positives
        idiag = torch.diag(i_logsm)
        jdiag = torch.diag(j_logsm)
        loss_i = idiag.sum() / len(idiag)
        loss_j = jdiag.sum() / len(jdiag)

        loss_saliency_inter = - loss_i - loss_j

        # * intra-vid mode
        if 'cls_idx' not in targets.keys(): # eval
            return {"loss_s_inter": loss_saliency_inter}

        cls_indices = targets['cls_idx'].bool()
        cls_feats = outputs["cls_mem_proj"].squeeze(1)
        sim_cls = sim_matrix(vid_feats, cls_feats)

        i_logsm_cls = F.log_softmax(sim_cls / self.temperature, dim=1)
        idiag_cls = i_logsm_cls[cls_indices]
        loss_cls_i = idiag_cls.sum() / len(idiag_cls)

        loss_saliency_intra = - loss_cls_i

        return {"loss_s_inter": loss_saliency_inter, "loss_s_intra": loss_saliency_intra}

    def get_loss(self, loss, outputs, targets, indices, **kwargs):
        loss_map = {
            "spans": self.loss_spans,
            "labels": self.loss_labels,
            "saliency": self.loss_saliency,
            "saliency_cls": self.loss_saliency_cls,
        }
        assert loss in loss_map, f'do you really want to compute {loss} loss?'
        return loss_map[loss](outputs, targets, indices, **kwargs)

    def forward(self, outputs, targets, hl_only=False):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        indices = None
        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices))

        return losses

class MLP(nn.Module):
    """ Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x

class Conv(nn.Module):
    """ Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers, kernel_size):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        # self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
        self.layers = nn.ModuleList(
            nn.Conv1d(n, k, kernel_size=kernel_size, stride=1, padding=kernel_size//2, dilation=1, groups=1, bias=True, padding_mode='zeros')
                                    for n, k in zip([input_dim] + h, h + [output_dim]))
    def forward(self, x):
        x = x.permute(0,2,1)
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x.permute(0, 2, 1)

class LinearLayer(nn.Module):
    """linear layer configurable with layer normalization, dropout, ReLU."""

    def __init__(self, in_hsz, out_hsz, layer_norm=True, dropout=0.1, relu=True):
        super(LinearLayer, self).__init__()
        self.relu = relu
        self.layer_norm = layer_norm
        if layer_norm:
            self.LayerNorm = nn.LayerNorm(in_hsz)
        layers = [
            nn.Dropout(dropout),
            nn.Linear(in_hsz, out_hsz)
        ]
        self.net = nn.Sequential(*layers)

    def forward(self, x):
        """(N, L, D)"""
        if self.layer_norm:
            x = self.LayerNorm(x)
        x = self.net(x)
        if self.relu:
            x = F.relu(x, inplace=True)
        return x  # (N, L, D)


def build_model(args):
    device = torch.device(args.device)

    transformer = build_transformer(args)
    position_embedding, txt_position_embedding = build_position_encoding(args)

    model = Model(
        transformer,
        position_embedding,
        txt_position_embedding,
        txt_dim=args.t_feat_dim,
        vid_dim=args.v_feat_dim,
        input_dropout=args.input_dropout,
        span_loss_type=args.span_loss_type,
        use_txt_pos=args.use_txt_pos,
        n_input_proj=args.n_input_proj,
    )

    matcher = build_matcher(args)
    weight_dict = {"loss_b": args.b_loss_coef,
                   "loss_g": args.g_loss_coef,
                   "loss_f": args.f_loss_coef,
                   "loss_s_intra": args.s_loss_intra_coef,
                   "loss_s_inter": args.s_loss_inter_coef}

    if args.dset_type in ['mr', 'vlp']:
        if 'tal' not in args.train_path:
            losses = ['spans', 'labels', 'saliency']
        else:
            losses = ['spans', 'labels', 'saliency_cls']
    elif args.dset_type in ['hl', 'vs']:
        losses = ['labels', 'saliency']

    criterion = SetCriterion(
        matcher=matcher,
        weight_dict=weight_dict, losses=losses,
        eos_coef=args.eos_coef, temperature=args.temperature,
        span_loss_type=args.span_loss_type, max_v_l=args.max_v_l,
        saliency_margin=args.saliency_margin,
    )
    criterion.to(device)
    return model, criterion