File size: 10,803 Bytes
9d0a4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import pdb
import sys
import time
import json
import pprint
import random
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict

import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

sys.path.append('/data/home/qinghonglin/univtg')
from main.config import BaseOptions, setup_model
from main.dataset import \
    DatasetMR, start_end_collate_mr, prepare_batch_inputs_mr
from main.inference_mr import eval_epoch, start_inference
from utils.basic_utils import set_seed, AverageMeter, dict_to_markdown
from utils.model_utils import count_parameters

import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
                    datefmt="%Y-%m-%d %H:%M:%S",
                    level=logging.INFO)

def train_epoch(model, criterion, train_loader, optimizer, opt, epoch_i, tb_writer):
    logger.info(f"[Epoch {epoch_i+1}]")
    model.train()
    criterion.train()

    # init meters
    time_meters = defaultdict(AverageMeter)
    loss_meters = defaultdict(AverageMeter)

    num_training_examples = len(train_loader)
    timer_dataloading = time.time()
    for batch_idx, batch in tqdm(enumerate(train_loader),
                                 desc="Training Iteration",
                                 total=num_training_examples):
        time_meters["dataloading_time"].update(time.time() - timer_dataloading)

        timer_start = time.time()
        model_inputs, targets = prepare_batch_inputs_mr(batch[1], opt.device, non_blocking=opt.pin_memory)
        time_meters["prepare_inputs_time"].update(time.time() - timer_start)

        timer_start = time.time()

        # try:
        outputs = model(**model_inputs)
        loss_dict = criterion(outputs, targets)
        weight_dict = criterion.weight_dict
        losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
        time_meters["model_forward_time"].update(time.time() - timer_start)

        timer_start = time.time()
        optimizer.zero_grad()
        losses.backward()

        if opt.grad_clip > 0:
            nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
        optimizer.step()
        time_meters["model_backward_time"].update(time.time() - timer_start)

        loss_dict["loss_overall"] = float(losses)  # for logging only
        for k, v in loss_dict.items():
            loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))

        timer_dataloading = time.time()

    # print/add logs
    tb_writer.add_scalar("Train/lr", float(optimizer.param_groups[0]["lr"]), epoch_i+1)
    for k, v in loss_meters.items():
        tb_writer.add_scalar("Train/{}".format(k), v.avg, epoch_i+1)

    to_write = opt.train_log_txt_formatter.format(
        time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
        epoch=epoch_i+1,
        loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in loss_meters.items()]))
    with open(opt.train_log_filepath, "a") as f:
        f.write(to_write)

    logger.info("Epoch time stats:")
    for name, meter in time_meters.items():
        d = {k: f"{getattr(meter, k):.4f}" for k in ["max", "min", "avg"]}
        logger.info(f"{name} ==> {d}")


def train(model, criterion, optimizer, lr_scheduler, train_dataset, val_dataset, opt):
    tb_writer = SummaryWriter(opt.tensorboard_log_dir)
    tb_writer.add_text("hyperparameters", dict_to_markdown(vars(opt), max_str_len=None))
    opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
    opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n"

    train_loader = DataLoader(
        train_dataset,
        collate_fn=start_end_collate_mr,
        batch_size=opt.bsz,
        num_workers=opt.num_workers,
        shuffle=True,
        pin_memory=opt.pin_memory
    )

    prev_best_score = 0.
    es_cnt = 0
    if opt.start_epoch is None:
        start_epoch = -1 if opt.eval_init else 0
    else:
        start_epoch = opt.start_epoch
    save_submission_filename = "latest_{}_{}_preds.jsonl".format(opt.dset_name, opt.eval_split_name)
    for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
        if epoch_i > -1:
            train_epoch(model, criterion, train_loader, optimizer, opt, epoch_i, tb_writer)
            lr_scheduler.step()
        eval_epoch_interval = opt.eval_epoch
        if opt.eval_path is not None and (epoch_i + 1) % eval_epoch_interval == 0:
            with torch.no_grad():
                metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
                    eval_epoch(model, val_dataset, opt, save_submission_filename, epoch_i, criterion, tb_writer)

            # log
            to_write = opt.eval_log_txt_formatter.format(
                time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
                epoch=epoch_i,
                loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in eval_loss_meters.items()]),
                eval_metrics_str=json.dumps(metrics_no_nms))

            with open(opt.eval_log_filepath, "a") as f:
                f.write(to_write)
            logger.info("metrics_no_nms {}".format(pprint.pformat(metrics_no_nms["brief"], indent=4)))
            if metrics_nms is not None:
                logger.info("metrics_nms {}".format(pprint.pformat(metrics_nms["brief"], indent=4)))

            metrics = metrics_nms if metrics_nms is not None else metrics_no_nms
            for k, v in metrics["brief"].items():
                tb_writer.add_scalar(f"Eval/{k}", float(v), epoch_i+1)

            # stop_score = metrics["brief"]["MR-full-mAP"]
            # pdb.set_trace()
            stop_score = metrics["brief"][opt.main_metric]
            if stop_score > prev_best_score:
                es_cnt = 0
                prev_best_score = stop_score

                checkpoint = {
                    "model": model.state_dict(),
                    "optimizer": optimizer.state_dict(),
                    "lr_scheduler": lr_scheduler.state_dict(),
                    "epoch": epoch_i,
                    "opt": opt
                }
                torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"))

                best_file_paths = [e.replace("latest", "best") for e in latest_file_paths]
                for src, tgt in zip(latest_file_paths, best_file_paths):
                    os.renames(src, tgt)
                logger.info("The checkpoint file has been updated.")
            else:
                es_cnt += 1
                if opt.max_es_cnt != -1 and es_cnt > opt.max_es_cnt:  # early stop
                    with open(opt.train_log_filepath, "a") as f:
                        f.write(f"Early Stop at epoch {epoch_i}")
                    logger.info(f"\n>>>>> Early stop at epoch {epoch_i}  {prev_best_score}\n")
                    break

            # save ckpt
            checkpoint = {
                "model": model.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "epoch": epoch_i,
                "opt": opt
            }
            torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", "_latest.ckpt"))

        if (epoch_i + 1) % opt.save_interval == 0 or (epoch_i + 1) % opt.lr_drop == 0:  # additional copies
            checkpoint = {
                "model": model.state_dict(),
                "optimizer": optimizer.state_dict(),
                "epoch": epoch_i,
                "opt": opt
            }
            torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", f"_e{epoch_i:04d}.ckpt"))

        if opt.debug:
            break

    tb_writer.close()


def start_training():
    logger.info("Setup config, data and model...")
    opt = BaseOptions().parse()
    set_seed(opt.seed)
    if opt.debug:  # keep the model run deterministically
        # 'cudnn.benchmark = True' enabled auto finding the best algorithm for a specific input/net config.
        # Enable this only when input size is fixed.
        cudnn.benchmark = False
        cudnn.deterministic = True

    dataset_config = dict(
        dset_name=opt.dset_name,
        data_path=opt.train_path,
        v_feat_dirs=opt.v_feat_dirs,
        q_feat_dir=opt.t_feat_dir,
        v_feat_dim=opt.v_feat_dim,
        q_feat_dim=opt.t_feat_dim,
        q_feat_type="last_hidden_state",
        max_q_l=opt.max_q_l,
        max_v_l=opt.max_v_l,
        ctx_mode=opt.ctx_mode,
        data_ratio=opt.data_ratio,
        normalize_v=not opt.no_norm_vfeat,
        normalize_t=not opt.no_norm_tfeat,
        clip_len=opt.clip_length,
        max_windows=opt.max_windows,
        span_loss_type=opt.span_loss_type,
        txt_drop_ratio=opt.txt_drop_ratio,
        use_cache=opt.use_cache,
        add_easy_negative=opt.add_easy_negative,
        easy_negative_only=opt.easy_negative_only
    )

    dataset_config["data_path"] = opt.train_path
    train_dataset = DatasetMR(**dataset_config)

    if opt.eval_path is not None:
        dataset_config["data_path"] = opt.eval_path
        dataset_config["txt_drop_ratio"] = 0
        dataset_config["q_feat_dir"] = opt.t_feat_dir.replace("txt_clip_asr", "txt_clip").replace("txt_clip_cap", "txt_clip")  # for pretraining
        # dataset_config["load_labels"] = False  # uncomment to calculate eval loss
        eval_dataset = DatasetMR(**dataset_config)
    else:
        eval_dataset = None

    if opt.lr_warmup > 0:
        # total_steps = opt.n_epoch * len(train_dataset) // opt.bsz
        total_steps = opt.n_epoch
        warmup_steps = opt.lr_warmup if opt.lr_warmup > 1 else int(opt.lr_warmup * total_steps)
        opt.lr_warmup = [warmup_steps, total_steps]
    model, criterion, optimizer, lr_scheduler = setup_model(opt)
    logger.info(f"Model {model}")
    count_parameters(model)
    logger.info("Start Training...")
    train(model, criterion, optimizer, lr_scheduler, train_dataset, eval_dataset, opt)
    return opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"), opt.eval_split_name, opt.eval_path, opt.debug


if __name__ == '__main__':
    best_ckpt_path, eval_split_name, eval_path, debug = start_training()
    if not debug:
        input_args = ["--resume", best_ckpt_path,
                      "--eval_split_name", eval_split_name,
                      "--eval_path", eval_path]

        import sys
        sys.argv[1:] = input_args
        logger.info("\n\n\nFINISHED TRAINING!!!")
        logger.info("Evaluating model at {}".format(best_ckpt_path))
        logger.info("Input args {}".format(sys.argv[1:]))
        start_inference()