Spaces:
Runtime error
Runtime error
File size: 12,659 Bytes
9d0a4ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
import pdb
import h5py
import nncore
import torch
from torch.utils.data import Dataset
import numpy as np
from tqdm import tqdm
import random
import logging
from os.path import join, exists
from nncore.dataset import DATASETS
from nncore.parallel import DataContainer
from main.config_hl import TVSUM_SPLITS, YOUTUBE_SPLITS
from utils.basic_utils import load_jsonl, load_pickle, l2_normalize_np_array
from utils.tensor_utils import pad_sequences_1d
from utils.span_utils import span_xx_to_cxw
logger = logging.getLogger(__name__)
class DatasetQFVS(Dataset):
def __init__(self,config, use_tef=True):
# pdb.set_trace()
self.config=config
self.dataset=[]
self.use_tef=use_tef
self.embedding=load_pickle(f"./data/qfvs/txt_clip/{self.config['txt_feature']}.pkl")
self.transfer={"Cupglass":"Glass",
"Musicalinstrument":"Instrument",
"Petsanimal":"Animal"}
self.f_dict = {}
feat_type = self.config['vid_feature']
for video_id in self.config["train_videos"]:
self.f_dict[str(video_id)] = h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5','r')
for _ , _, files in os.walk("./data/qfvs/metadata/origin_data/Query-Focused_Summaries/Oracle_Summaries/P0"+str(video_id)):
for file in files:
self.dataset.append(['Oracle', file[:file.find("_oracle.txt")]+"_"+str(video_id)])
if self.config['qfvs_dense_shot'] > 0:
dense_concept = {}
feat_type = self.config['vid_feature']
feat=h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5','r')
features=feat['features'][()]
seg_len=feat['seg_len'][()]
with open("./data/qfvs/metadata/origin_data/Dense_per_shot_tags/P0"+str(video_id)+"/P0"+str(video_id)+".txt","r") as f:
lines=f.readlines()
for index,line in enumerate(lines):
concepts=line.strip().split(',')
for concept in concepts:
if concept in self.transfer:
concept= self.transfer[concept]
if concept not in dense_concept:
# dense_concept[concept] = torch.zeros(seg_len.sum())
dense_concept[concept] = torch.zeros(self.config["max_segment_num"]*self.config["max_frame_num"])
else:
dense_concept[concept][index] = 1
for key, value in dense_concept.items():
if value.sum().item() > 0:
self.dataset.append([video_id, key, value])
def __getitem__(self, index):
if self.dataset[index][0] == 'Oracle':
return self.get_oracle(index)
else:
return self.get_dense(index)
def get_dense(self,index):
video_id=str(self.dataset[index][0])
f = self.f_dict[video_id]
# feat_type = self.config['vid_feature']
# f=h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5','r')
features=f['features'][()]
seg_len=f['seg_len'][()]
dim = features.shape[-1]
mask_GT = torch.zeros(self.config["max_segment_num"], self.config["max_frame_num"], dtype=torch.bool)
for j in range(len(seg_len)):
for k in range(seg_len[j]):
mask_GT[j][k] = 1
features = torch.from_numpy(features)
concept1 = concept2 = self.dataset[index][1]
concept1_GT = concept2_GT = oracle_summary = self.dataset[index][2]
if concept1 in self.transfer:
concept1=self.transfer[concept1]
if concept2 in self.transfer:
concept2=self.transfer[concept2]
concept1=self.embedding[concept1]
concept2=self.embedding[concept2]
concept1 = l2_normalize_np_array(concept1)
concept2 = l2_normalize_np_array(concept2)
try:
saliency_pos_labels_1 = torch.Tensor([random.choice(torch.where(concept1_GT> 0)[0].tolist())])
except:
saliency_pos_labels_1 = torch.Tensor(0)
try:
saliency_pos_labels_2 = torch.Tensor([random.choice(torch.where(concept2_GT> 0)[0].tolist())])
except:
saliency_pos_labels_2 = torch.Tensor(0)
try:
saliency_pos_labels_oracle = torch.Tensor([random.choice(torch.where(oracle_summary> 0)[0].tolist())])
except:
saliency_pos_labels_oracle = torch.Tensor(0)
return {
'features':features,
'seg_len':torch.from_numpy(seg_len),
'concept1_GT':concept1_GT,
'concept2_GT':concept2_GT,
'mask_GT':mask_GT,
'oracle_summary':oracle_summary,
'tokens_pad1':torch.from_numpy(concept1),
'tokens_pad2':torch.from_numpy(concept2),
'saliency_pos_labels_1': saliency_pos_labels_1,
'saliency_pos_labels_2': saliency_pos_labels_2,
'saliency_pos_labels_oracle': saliency_pos_labels_oracle,
}
def get_oracle(self,index):
video_id=self.dataset[index][1].split('_')[2]
f = self.f_dict[video_id]
# video_id=self.dataset[index][1].split('_')[2]
# feat_type = self.config['vid_feature']
# f=h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5','r')
features=f['features'][()]
seg_len=f['seg_len'][()]
dim = features.shape[-1]
mask_GT = torch.zeros(self.config["max_segment_num"], self.config["max_frame_num"], dtype=torch.bool)
for j in range(len(seg_len)):
for k in range(seg_len[j]):
mask_GT[j][k] = 1
features = torch.from_numpy(features)
concept1,concept2=self.dataset[index][1].split('_')[0:2]
concept1_GT=torch.zeros(self.config["max_segment_num"]*self.config["max_frame_num"])
concept2_GT=torch.zeros(self.config["max_segment_num"]*self.config["max_frame_num"])
# concept1_GT=torch.zeros(seg_len.sum())
# concept2_GT= torch.zeros(seg_len.sum())
with open("./data/qfvs/metadata/origin_data/Dense_per_shot_tags/P0"+video_id+"/P0"+video_id+".txt","r") as f:
lines=f.readlines()
for index,line in enumerate(lines):
concepts=line.strip().split(',')
if concept1 in concepts:
concept1_GT[index]=1
if concept2 in concepts:
concept2_GT[index]=1
# oracle_summary =torch.zeros(seg_len.sum())
oracle_summary = torch.zeros(self.config["max_segment_num"]*self.config["max_frame_num"])
GT_summary_shots = []
with open("./data/qfvs/metadata/origin_data/Query-Focused_Summaries/Oracle_Summaries/P0"+str(video_id)+"/"+str(concept1)+"_"+str(concept2)+"_"+"oracle.txt","r") as f:
for line in f.readlines():
GT_summary_shots.append(int(line.strip()))
GT_summary_shots = [x - 1 for x in GT_summary_shots]
for element in GT_summary_shots:
oracle_summary[element] = 1
if concept1 in self.transfer:
concept1=self.transfer[concept1]
if concept2 in self.transfer:
concept2=self.transfer[concept2]
concept1=self.embedding[concept1]
concept2=self.embedding[concept2]
concept1 = l2_normalize_np_array(concept1)
concept2 = l2_normalize_np_array(concept2)
try:
saliency_pos_labels_1 = torch.Tensor([random.choice(torch.where(concept1_GT> 0)[0].tolist())])
except:
saliency_pos_labels_1 = torch.Tensor(0)
try:
saliency_pos_labels_2 = torch.Tensor([random.choice(torch.where(concept2_GT> 0)[0].tolist())])
except:
saliency_pos_labels_2 = torch.Tensor(0)
try:
saliency_pos_labels_oracle = torch.Tensor([random.choice(torch.where(oracle_summary> 0)[0].tolist())])
except:
saliency_pos_labels_oracle = torch.Tensor(0)
return {
'features':features,
'seg_len':torch.from_numpy(seg_len),
'concept1_GT':concept1_GT,
'concept2_GT':concept2_GT,
'mask_GT':mask_GT,
'oracle_summary':oracle_summary,
'tokens_pad1':torch.from_numpy(concept1),
'tokens_pad2':torch.from_numpy(concept2),
'saliency_pos_labels_1': saliency_pos_labels_1,
'saliency_pos_labels_2': saliency_pos_labels_2,
'saliency_pos_labels_oracle': saliency_pos_labels_oracle,
}
def __len__(self):
return len(self.dataset)
def start_end_collate_qfvs(batch):
model_inputs_keys = batch[0].keys()
batched_data = dict()
for k in model_inputs_keys:
batched_data[k] = pad_sequences_1d([e[k].data for e in batch], dtype=torch.float32, fixed_length=None)
return batched_data
def prepare_batch_inputs_qfvs(data, config, eval=False):
if not eval:
features, mask, seg_len, \
concept1_GT, concept2_GT, mask_GT, oracle_summary_GT, \
src_txt_1, src_txt_2, src_txt_mask_1, src_txt_mask_2,\
saliency_pos_labels_1, saliency_pos_labels_2, saliency_pos_labels_oracle = \
data['features'][0], data['mask_GT'][0], data['seg_len'][0],\
data['concept1_GT'][0], data['concept2_GT'][0], data['mask_GT'][0], data['oracle_summary'][0],\
data['tokens_pad1'][0], data['tokens_pad2'][0], data['tokens_pad1'][1], data['tokens_pad2'][1], \
data['saliency_pos_labels_1'][0], data['saliency_pos_labels_2'][0], data['saliency_pos_labels_oracle'][0],
else:
features, mask, seg_len, \
src_txt_1, src_txt_2, src_txt_mask_1, src_txt_mask_2 = \
data['features'][0], data['mask_GT'][0], data['seg_len'][0],\
data['tokens_pad1'][0], data['tokens_pad2'][0], data['tokens_pad1'][1], data['tokens_pad2'][1]
# preprocess for vid input.
mask_GT = mask.to('cuda').reshape(1, -1).bool()
seq = features.to('cuda').squeeze(0)
mask = mask.to('cuda').squeeze(0)
num_seg = seq.shape[0]
ctx_l = seq.shape[1]
tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
tef_ed = tef_st + 1.0 / ctx_l
tef = torch.stack([tef_st, tef_ed], dim=1).to('cuda') # (Lv, 2)
tef = tef.squeeze(0).repeat(seq.shape[0], 1, 1)
seq = torch.cat([seq, tef], dim=-1)
# for txt input.
src_txt_1 = src_txt_1.to(torch.float32).to('cuda').repeat(num_seg, 1, 1)
src_txt_2 = src_txt_2.to(torch.float32).to('cuda').repeat(num_seg, 1, 1)
src_txt_mask_1 = src_txt_mask_1.to('cuda').repeat(num_seg, 1)
src_txt_mask_2 = src_txt_mask_2.to('cuda').repeat(num_seg, 1)
src_txt_oracle = torch.cat((src_txt_1, src_txt_2), dim=1).to('cuda')
src_txt_mask_oracle = torch.cat((src_txt_mask_1, src_txt_mask_2), dim=1).to('cuda')
model_inputs_1 = dict(src_vid=seq, src_vid_mask=mask, src_txt=src_txt_1, src_txt_mask=src_txt_mask_1)
model_inputs_2 = dict(src_vid=seq, src_vid_mask=mask, src_txt=src_txt_2, src_txt_mask=src_txt_mask_2)
model_inputs_oracle = dict(src_vid=seq, src_vid_mask=mask, src_txt=src_txt_oracle, src_txt_mask=src_txt_mask_oracle)
# concept1_GT = concept1_GT.squeeze().reshape(config['max_segment_num'], config['max_frame_num'])
# concept2_GT = concept2_GT.squeeze().reshape(config['max_segment_num'], config['max_frame_num'])
# oracle_summary_GT = oracle_summary_GT.squeeze().reshape(config['max_segment_num'], config['max_frame_num'])
if not eval:
targets_1 = dict(saliency_scores=concept1_GT.to('cuda'), saliency_pos_labels=saliency_pos_labels_1.to('cuda'))
targets_2 = dict(saliency_scores=concept2_GT.to('cuda'), saliency_pos_labels=saliency_pos_labels_2.to('cuda'))
targets_oracle = dict(saliency_scores=oracle_summary_GT.to('cuda'), saliency_pos_labels=saliency_pos_labels_oracle.to('cuda'))
targets_1['timestamp_mask'] = mask; targets_1['timestamp_window'] = concept1_GT.to('cuda')
targets_2['timestamp_mask'] = mask; targets_2['timestamp_window'] = concept2_GT.to('cuda')
targets_oracle['timestamp_mask'] = mask; targets_oracle['timestamp_window'] = oracle_summary_GT.to('cuda')
return model_inputs_1, model_inputs_2, model_inputs_oracle, \
targets_1, targets_2, targets_oracle, mask_GT
else:
return model_inputs_1, model_inputs_2, model_inputs_oracle, mask_GT |