File size: 12,659 Bytes
9d0a4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import pdb
import h5py
import nncore
import torch
from torch.utils.data import Dataset
import numpy as np
from tqdm import tqdm
import random
import logging
from os.path import join, exists
from nncore.dataset import DATASETS
from nncore.parallel import DataContainer
from main.config_hl import TVSUM_SPLITS, YOUTUBE_SPLITS
from utils.basic_utils import load_jsonl, load_pickle, l2_normalize_np_array
from utils.tensor_utils import pad_sequences_1d
from utils.span_utils import span_xx_to_cxw

logger = logging.getLogger(__name__)

class DatasetQFVS(Dataset):
    def __init__(self,config, use_tef=True):
        # pdb.set_trace()
        self.config=config
        self.dataset=[]
        self.use_tef=use_tef

        self.embedding=load_pickle(f"./data/qfvs/txt_clip/{self.config['txt_feature']}.pkl")
 
        self.transfer={"Cupglass":"Glass",
                  "Musicalinstrument":"Instrument",
                  "Petsanimal":"Animal"}

        self.f_dict = {}
        feat_type = self.config['vid_feature']

        for video_id in self.config["train_videos"]:
            self.f_dict[str(video_id)] = h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5','r')
            for _ , _, files in os.walk("./data/qfvs/metadata/origin_data/Query-Focused_Summaries/Oracle_Summaries/P0"+str(video_id)):
                for file in files:
                    self.dataset.append(['Oracle', file[:file.find("_oracle.txt")]+"_"+str(video_id)])
            
            if self.config['qfvs_dense_shot'] > 0:
                dense_concept = {}
                feat_type = self.config['vid_feature']
                feat=h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5','r')
                features=feat['features'][()]
                seg_len=feat['seg_len'][()]
                with open("./data/qfvs/metadata/origin_data/Dense_per_shot_tags/P0"+str(video_id)+"/P0"+str(video_id)+".txt","r") as f:
                        lines=f.readlines()
                        for index,line in enumerate(lines):
                            concepts=line.strip().split(',')
                            for concept in concepts:
                                if concept in self.transfer:
                                   concept= self.transfer[concept]
                                if concept not in dense_concept:
                                    # dense_concept[concept] = torch.zeros(seg_len.sum())
                                    dense_concept[concept] = torch.zeros(self.config["max_segment_num"]*self.config["max_frame_num"])
                                else:
                                    dense_concept[concept][index] = 1

                for key, value in dense_concept.items():
                    if value.sum().item() > 0:
                        self.dataset.append([video_id, key, value])

    def __getitem__(self, index):
        if self.dataset[index][0] == 'Oracle':
            return self.get_oracle(index)
        else:
            return self.get_dense(index)

    def get_dense(self,index):
        video_id=str(self.dataset[index][0])
        f = self.f_dict[video_id]
        # feat_type = self.config['vid_feature']
        # f=h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5','r')
        features=f['features'][()]
        seg_len=f['seg_len'][()]

        dim = features.shape[-1]

        mask_GT = torch.zeros(self.config["max_segment_num"], self.config["max_frame_num"], dtype=torch.bool)
        for j in range(len(seg_len)):
            for k in range(seg_len[j]):
                mask_GT[j][k] = 1

        features = torch.from_numpy(features)

        concept1 = concept2 = self.dataset[index][1]
        concept1_GT = concept2_GT = oracle_summary = self.dataset[index][2]

        if concept1 in self.transfer:
            concept1=self.transfer[concept1]
        if concept2 in self.transfer:
            concept2=self.transfer[concept2]
        concept1=self.embedding[concept1]
        concept2=self.embedding[concept2]

        concept1 = l2_normalize_np_array(concept1)
        concept2 = l2_normalize_np_array(concept2)

        try:
            saliency_pos_labels_1 = torch.Tensor([random.choice(torch.where(concept1_GT> 0)[0].tolist())])
        except:
            saliency_pos_labels_1 = torch.Tensor(0)

        try:
            saliency_pos_labels_2 = torch.Tensor([random.choice(torch.where(concept2_GT> 0)[0].tolist())])
        except:
            saliency_pos_labels_2 = torch.Tensor(0)

        try:
            saliency_pos_labels_oracle = torch.Tensor([random.choice(torch.where(oracle_summary> 0)[0].tolist())])
        except:
            saliency_pos_labels_oracle = torch.Tensor(0)

        return {
            'features':features,
            'seg_len':torch.from_numpy(seg_len),
            'concept1_GT':concept1_GT,
            'concept2_GT':concept2_GT,
            'mask_GT':mask_GT,
            'oracle_summary':oracle_summary,
            'tokens_pad1':torch.from_numpy(concept1),
            'tokens_pad2':torch.from_numpy(concept2),
            'saliency_pos_labels_1': saliency_pos_labels_1,
            'saliency_pos_labels_2': saliency_pos_labels_2,
            'saliency_pos_labels_oracle': saliency_pos_labels_oracle,
        }

    def get_oracle(self,index):
        video_id=self.dataset[index][1].split('_')[2]
        f = self.f_dict[video_id]
        # video_id=self.dataset[index][1].split('_')[2]
        # feat_type = self.config['vid_feature']
        # f=h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5','r')
        features=f['features'][()]
        seg_len=f['seg_len'][()]

        dim = features.shape[-1]

        mask_GT = torch.zeros(self.config["max_segment_num"], self.config["max_frame_num"], dtype=torch.bool)
        for j in range(len(seg_len)):
            for k in range(seg_len[j]):
                mask_GT[j][k] = 1

        features = torch.from_numpy(features)

        concept1,concept2=self.dataset[index][1].split('_')[0:2]

        concept1_GT=torch.zeros(self.config["max_segment_num"]*self.config["max_frame_num"])
        concept2_GT=torch.zeros(self.config["max_segment_num"]*self.config["max_frame_num"])
        # concept1_GT=torch.zeros(seg_len.sum())
        # concept2_GT= torch.zeros(seg_len.sum())
        with open("./data/qfvs/metadata/origin_data/Dense_per_shot_tags/P0"+video_id+"/P0"+video_id+".txt","r") as f:
            lines=f.readlines()
            for index,line in enumerate(lines):
                concepts=line.strip().split(',')
                if concept1 in concepts:
                    concept1_GT[index]=1
                if concept2 in concepts:
                    concept2_GT[index]=1

        # oracle_summary =torch.zeros(seg_len.sum())
        oracle_summary = torch.zeros(self.config["max_segment_num"]*self.config["max_frame_num"])
        GT_summary_shots = []
        with open("./data/qfvs/metadata/origin_data/Query-Focused_Summaries/Oracle_Summaries/P0"+str(video_id)+"/"+str(concept1)+"_"+str(concept2)+"_"+"oracle.txt","r") as f:
            for line in f.readlines():
                GT_summary_shots.append(int(line.strip()))
        GT_summary_shots = [x - 1 for x in GT_summary_shots]
        for element in GT_summary_shots:
            oracle_summary[element] = 1

        if concept1 in self.transfer:
            concept1=self.transfer[concept1]
        if concept2 in self.transfer:
            concept2=self.transfer[concept2]
        concept1=self.embedding[concept1]
        concept2=self.embedding[concept2]

        concept1 = l2_normalize_np_array(concept1)
        concept2 = l2_normalize_np_array(concept2)

        try:
            saliency_pos_labels_1 = torch.Tensor([random.choice(torch.where(concept1_GT> 0)[0].tolist())])
        except:
            saliency_pos_labels_1 = torch.Tensor(0)

        try:
            saliency_pos_labels_2 = torch.Tensor([random.choice(torch.where(concept2_GT> 0)[0].tolist())])
        except:
            saliency_pos_labels_2 = torch.Tensor(0)

        try:
            saliency_pos_labels_oracle = torch.Tensor([random.choice(torch.where(oracle_summary> 0)[0].tolist())])
        except:
            saliency_pos_labels_oracle = torch.Tensor(0)

        return {
            'features':features,
            'seg_len':torch.from_numpy(seg_len),
            'concept1_GT':concept1_GT,
            'concept2_GT':concept2_GT,
            'mask_GT':mask_GT,
            'oracle_summary':oracle_summary,
            'tokens_pad1':torch.from_numpy(concept1),
            'tokens_pad2':torch.from_numpy(concept2),
            'saliency_pos_labels_1': saliency_pos_labels_1,
            'saliency_pos_labels_2': saliency_pos_labels_2,
            'saliency_pos_labels_oracle': saliency_pos_labels_oracle,
        }

    def __len__(self):
        return len(self.dataset)

def start_end_collate_qfvs(batch):
    model_inputs_keys = batch[0].keys()

    batched_data = dict()
    for k in model_inputs_keys:
        batched_data[k] = pad_sequences_1d([e[k].data for e in batch], dtype=torch.float32, fixed_length=None)

    return batched_data

def prepare_batch_inputs_qfvs(data, config, eval=False):
    if not eval:
        features, mask, seg_len, \
        concept1_GT, concept2_GT, mask_GT, oracle_summary_GT, \
        src_txt_1, src_txt_2, src_txt_mask_1, src_txt_mask_2,\
        saliency_pos_labels_1, saliency_pos_labels_2, saliency_pos_labels_oracle = \
            data['features'][0],  data['mask_GT'][0], data['seg_len'][0],\
            data['concept1_GT'][0], data['concept2_GT'][0], data['mask_GT'][0], data['oracle_summary'][0],\
            data['tokens_pad1'][0], data['tokens_pad2'][0], data['tokens_pad1'][1], data['tokens_pad2'][1], \
            data['saliency_pos_labels_1'][0], data['saliency_pos_labels_2'][0], data['saliency_pos_labels_oracle'][0],
    else:
        features, mask, seg_len, \
        src_txt_1, src_txt_2, src_txt_mask_1, src_txt_mask_2 =  \
            data['features'][0], data['mask_GT'][0], data['seg_len'][0],\
            data['tokens_pad1'][0], data['tokens_pad2'][0], data['tokens_pad1'][1], data['tokens_pad2'][1]

    # preprocess for vid input.
    mask_GT = mask.to('cuda').reshape(1, -1).bool()
    seq = features.to('cuda').squeeze(0)
    mask = mask.to('cuda').squeeze(0)
    num_seg = seq.shape[0]

    ctx_l = seq.shape[1]
    tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
    tef_ed = tef_st + 1.0 / ctx_l
    tef = torch.stack([tef_st, tef_ed], dim=1).to('cuda')  # (Lv, 2)

    tef = tef.squeeze(0).repeat(seq.shape[0], 1, 1)
    seq = torch.cat([seq, tef], dim=-1)

    # for txt input.
    src_txt_1 = src_txt_1.to(torch.float32).to('cuda').repeat(num_seg, 1, 1)
    src_txt_2 = src_txt_2.to(torch.float32).to('cuda').repeat(num_seg, 1, 1)
    src_txt_mask_1 = src_txt_mask_1.to('cuda').repeat(num_seg, 1)
    src_txt_mask_2 = src_txt_mask_2.to('cuda').repeat(num_seg, 1)

    src_txt_oracle = torch.cat((src_txt_1, src_txt_2), dim=1).to('cuda')
    src_txt_mask_oracle = torch.cat((src_txt_mask_1, src_txt_mask_2), dim=1).to('cuda')

    model_inputs_1 = dict(src_vid=seq, src_vid_mask=mask, src_txt=src_txt_1, src_txt_mask=src_txt_mask_1)
    model_inputs_2 = dict(src_vid=seq, src_vid_mask=mask, src_txt=src_txt_2, src_txt_mask=src_txt_mask_2)
    model_inputs_oracle = dict(src_vid=seq, src_vid_mask=mask, src_txt=src_txt_oracle, src_txt_mask=src_txt_mask_oracle)

    # concept1_GT = concept1_GT.squeeze().reshape(config['max_segment_num'], config['max_frame_num'])
    # concept2_GT = concept2_GT.squeeze().reshape(config['max_segment_num'], config['max_frame_num'])
    # oracle_summary_GT = oracle_summary_GT.squeeze().reshape(config['max_segment_num'], config['max_frame_num'])

    if not eval:
        targets_1 = dict(saliency_scores=concept1_GT.to('cuda'), saliency_pos_labels=saliency_pos_labels_1.to('cuda'))
        targets_2 = dict(saliency_scores=concept2_GT.to('cuda'), saliency_pos_labels=saliency_pos_labels_2.to('cuda'))
        targets_oracle = dict(saliency_scores=oracle_summary_GT.to('cuda'), saliency_pos_labels=saliency_pos_labels_oracle.to('cuda'))

        targets_1['timestamp_mask'] = mask; targets_1['timestamp_window'] = concept1_GT.to('cuda')
        targets_2['timestamp_mask'] = mask; targets_2['timestamp_window'] = concept2_GT.to('cuda')
        targets_oracle['timestamp_mask'] = mask; targets_oracle['timestamp_window'] = oracle_summary_GT.to('cuda')

        return model_inputs_1, model_inputs_2, model_inputs_oracle, \
               targets_1, targets_2, targets_oracle, mask_GT
    else:
        return model_inputs_1, model_inputs_2, model_inputs_oracle, mask_GT