File size: 9,236 Bytes
9d0a4ae
 
 
 
 
 
 
 
 
 
 
 
 
b3fb703
9d0a4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b276ea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import pdb
import time
import torch
import gradio as gr
import numpy as np
import argparse
import subprocess
from run_on_video import clip, vid2clip, txt2clip

parser = argparse.ArgumentParser(description='')
parser.add_argument('--save_dir', type=str, default='./tmp')
parser.add_argument('--resume', type=str, default='./results/omni/model_best.ckpt')
parser.add_argument("--gpu_id", type=int, default=0)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)

#################################
model_version = "ViT-B/32"
output_feat_size = 512
clip_len = 2
overwrite = True
num_decoding_thread = 4
half_precision = False

clip_model, _ = clip.load(model_version, device=args.gpu_id, jit=False)

import logging
import torch.backends.cudnn as cudnn
from main.config import TestOptions, setup_model
from utils.basic_utils import l2_normalize_np_array

logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
                    datefmt="%Y-%m-%d %H:%M:%S",
                    level=logging.INFO)

def load_model():
    logger.info("Setup config, data and model...")
    opt = TestOptions().parse(args)
    # pdb.set_trace()
    cudnn.benchmark = True
    cudnn.deterministic = False

    if opt.lr_warmup > 0:
        total_steps = opt.n_epoch
        warmup_steps = opt.lr_warmup if opt.lr_warmup > 1 else int(opt.lr_warmup * total_steps)
        opt.lr_warmup = [warmup_steps, total_steps]

    model, criterion, _, _ = setup_model(opt)
    return model

vtg_model = load_model()

def convert_to_hms(seconds):
    return time.strftime('%H:%M:%S', time.gmtime(seconds))

def load_data(save_dir):
    vid = np.load(os.path.join(save_dir, 'vid.npz'))['features'].astype(np.float32)
    txt = np.load(os.path.join(save_dir, 'txt.npz'))['features'].astype(np.float32)

    vid = torch.from_numpy(l2_normalize_np_array(vid))
    txt = torch.from_numpy(l2_normalize_np_array(txt))
    clip_len = 2
    ctx_l = vid.shape[0]

    timestamp =  ( (torch.arange(0, ctx_l) + clip_len / 2) / ctx_l).unsqueeze(1).repeat(1, 2)

    if True:
        tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
        tef_ed = tef_st + 1.0 / ctx_l
        tef = torch.stack([tef_st, tef_ed], dim=1)  # (Lv, 2)
        vid = torch.cat([vid, tef], dim=1)  # (Lv, Dv+2)

    src_vid = vid.unsqueeze(0).cuda()
    src_txt = txt.unsqueeze(0).cuda()
    src_vid_mask = torch.ones(src_vid.shape[0], src_vid.shape[1]).cuda()
    src_txt_mask = torch.ones(src_txt.shape[0], src_txt.shape[1]).cuda()

    return src_vid, src_txt, src_vid_mask, src_txt_mask, timestamp, ctx_l

def forward(model, save_dir, query):
    src_vid, src_txt, src_vid_mask, src_txt_mask, timestamp, ctx_l = load_data(save_dir)
    src_vid = src_vid.cuda(args.gpu_id)
    src_txt = src_txt.cuda(args.gpu_id)
    src_vid_mask = src_vid_mask.cuda(args.gpu_id)
    src_txt_mask = src_txt_mask.cuda(args.gpu_id)
    
    with torch.no_grad():
        output = model(src_vid=src_vid, src_txt=src_txt, src_vid_mask=src_vid_mask, src_txt_mask=src_txt_mask)
    
    # prepare the model prediction
    pred_logits = output['pred_logits'][0].cpu()
    pred_spans = output['pred_spans'][0].cpu()
    pred_saliency = output['saliency_scores'].cpu()

    # prepare the model prediction
    pred_windows = (pred_spans + timestamp) * ctx_l * clip_len
    pred_confidence = pred_logits
    
    # grounding
    top1_window = pred_windows[torch.argmax(pred_confidence)].tolist()
    top5_values, top5_indices = torch.topk(pred_confidence.flatten(), k=5)
    top5_windows = pred_windows[top5_indices].tolist()
    
    # print(f"The video duration is {convert_to_hms(src_vid.shape[1]*clip_len)}.")
    q_response = f"For query: {query}"

    mr_res =  " - ".join([convert_to_hms(int(i)) for i in top1_window])
    mr_response = f"The Top-1 interval is: {mr_res}"
    
    hl_res = convert_to_hms(torch.argmax(pred_saliency) * clip_len)
    hl_response = f"The Top-1 highlight is: {hl_res}"
    return '\n'.join([q_response, mr_response, hl_response])
    
def extract_vid(vid_path, state):
    history = state['messages']
    vid_features = vid2clip(clip_model, vid_path, args.save_dir)
    history.append({"role": "user", "content": "Finish extracting video features."}) 
    history.append({"role": "system", "content": "Please Enter the text query."}) 
    chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history),2)]
    return '', chat_messages, state

def extract_txt(txt):
    txt_features = txt2clip(clip_model, txt, args.save_dir)
    return

def download_video(url, save_dir='./examples', size=768):
    save_path = f'{save_dir}/{url}.mp4'
    cmd = f'yt-dlp -S ext:mp4:m4a --throttled-rate 5M -f "best[width<={size}][height<={size}]" --output {save_path} --merge-output-format mp4 https://www.youtube.com/embed/{url}'
    if not os.path.exists(save_path):
        try:
            subprocess.call(cmd, shell=True)
        except:
            return None
    return save_path

def get_empty_state():
    return {"total_tokens": 0, "messages": []}

def submit_message(prompt, state):
    history = state['messages']

    if not prompt:
        return gr.update(value=''), [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)], state

    prompt_msg = { "role": "user", "content": prompt }
    
    try:
        history.append(prompt_msg)
        # answer = vlogger.chat2video(prompt)
        # answer = prompt
        extract_txt(prompt)
        answer = forward(vtg_model, args.save_dir, prompt)
        history.append({"role": "system", "content": answer}) 

    except Exception as e:
        history.append(prompt_msg)
        history.append({
            "role": "system",
            "content": f"Error: {e}"
        })

    chat_messages = [(history[i]['content'], history[i+1]['content']) for i in range(0, len(history)-1, 2)]
    return '', chat_messages, state


def clear_conversation():
    return gr.update(value=None, visible=True), gr.update(value=None, interactive=True), None, gr.update(value=None, visible=True), get_empty_state()


def subvid_fn(vid):
    save_path = download_video(vid)
    return gr.update(value=save_path)


css = """
      #col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
      #video_inp {min-height: 100px}
      #chatbox {min-height: 100px;}
      #header {text-align: center;}
      #hint {font-size: 1.0em; padding: 0.5em; margin: 0;}
      .message { font-size: 1.2em; }
      """

with gr.Blocks(css=css) as demo:
    
    state = gr.State(get_empty_state())


    with gr.Column(elem_id="col-container"):
        gr.Markdown("""## πŸ€–οΈ UniVTG: Towards Unified Video-Language Temporal Grounding
                    Given a video and text query, return relevant window and highlight.""",
                    elem_id="header")

        with gr.Row():
            with gr.Column():
                video_inp = gr.Video(label="video_input")
                gr.Markdown("πŸ‘‹ **Step1**: Select a video in Examples (bottom) or input youtube video_id in this textbox, *e.g.* *G7zJK6lcbyU* for https://www.youtube.com/watch?v=G7zJK6lcbyU", elem_id="hint")
                with gr.Row():
                    video_id = gr.Textbox(value="", placeholder="Youtube video url", show_label=False)
                    vidsub_btn = gr.Button("(Optional) Submit Youtube id")

            with gr.Column():
                vid_ext = gr.Button("Step2: Extract video feature, may takes a while")
                # vlog_outp = gr.Textbox(label="Document output", lines=40)
                total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
                
                chatbot = gr.Chatbot(elem_id="chatbox")
                input_message = gr.Textbox(show_label=False, placeholder="Enter text query and press enter", visible=True).style(container=False)
                btn_submit = gr.Button("Step3: Enter your text query")
                btn_clear_conversation = gr.Button("πŸ”ƒ Clear")

        examples = gr.Examples(
            examples=[
                ["./examples/youtube.mp4"], 
                ["./examples/charades.mp4"], 
                ["./examples/ego4d.mp4"],
            ],
            inputs=[video_inp],
        )

    gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/anzorq/chatgpt-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br></center>''')

    btn_submit.click(submit_message, [input_message, state], [input_message, chatbot])
    input_message.submit(submit_message, [input_message, state], [input_message, chatbot])
    # btn_clear_conversation.click(clear_conversation, [], [input_message, video_inp, chatbot, vlog_outp, state])
    btn_clear_conversation.click(clear_conversation, [], [input_message, video_inp, chatbot, state])
    vid_ext.click(extract_vid, [video_inp, state], [input_message, chatbot])
    vidsub_btn.click(subvid_fn, [video_id], [video_inp])

    demo.load(queur=False)


demo.queue(concurrency_count=10)
# demo.launch(height='800px', server_port=2253, debug=True, share=True)
demo.launch(height='800px')