Spaces:
Runtime error
Runtime error
File size: 14,302 Bytes
a1fe393 fc4376a 59976e9 fc4376a a1fe393 817bf26 03b6c83 a1fe393 551bf96 a1fe393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
"""
TODO:
+ [x] Load Configuration
+ [ ] Checking
+ [ ] Better saving directory
"""
import numpy as np
from pathlib import Path
import jiwer
import pdb
import torch.nn as nn
import torch
import torchaudio
import gradio as gr
from logging import PlaceHolder
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import yaml
from transformers import pipeline
import librosa
import librosa.display
import matplotlib.pyplot as plt
# local import
import sys
sys.path.append("src")
import lightning_module
# Load automos
# config_yaml = sys.argv[1]
config_yaml = "config/Arthur.yaml"
with open(config_yaml, "r") as f:
# pdb.set_trace()
try:
config = yaml.safe_load(f)
except FileExistsError:
print("Config file Loading Error")
exit()
# Auto load examples
with open(config["ref_txt"], "r") as f:
refs = f.readlines()
refs_ids = [x.split()[0] for x in refs]
refs_txt = [" ".join(x.split()[1:]) for x in refs]
ref_feature = np.loadtxt(config["ref_feature"], delimiter=",", dtype="str")
ref_wavs = [str(x) for x in sorted(Path(config["ref_wavs"]).glob("**/*.wav"))]
dummy_wavs = [None for x in np.arange(len(ref_wavs))]
refs_ppm = np.array(ref_feature[:, -1][1:], dtype="str")
reference_id = gr.Textbox(value="ID", placeholder="Utter ID", label="Reference_ID")
reference_textbox = gr.Textbox(
value="Input reference here",
placeholder="Input reference here",
label="Reference",
)
reference_PPM = gr.Textbox(placeholder="Pneumatic Voice's PPM", label="Ref PPM")
# Set up interface
# remove dummpy wavs, ue the same ref_wavs for eval wavs
print("Preparing Examples")
examples = [
[w, w_, i, x, y] for w, w_, i, x, y in zip(ref_wavs, ref_wavs, refs_ids, refs_txt, refs_ppm)
]
# p = pipeline(
# "automatic-speech-recognition",
# model="KevinGeng/whipser_medium_en_PAL300_step25",
# device=0,
# )
p = pipeline("automatic-speech-recognition")
# WER part
transformation = jiwer.Compose(
[
jiwer.RemovePunctuation(),
jiwer.ToLowerCase(),
jiwer.RemoveWhiteSpace(replace_by_space=True),
jiwer.RemoveMultipleSpaces(),
jiwer.ReduceToListOfListOfWords(word_delimiter=" "),
]
)
# WPM part
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
phoneme_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
class ChangeSampleRate(nn.Module):
def __init__(self, input_rate: int, output_rate: int):
super().__init__()
self.output_rate = output_rate
self.input_rate = input_rate
def forward(self, wav: torch.tensor) -> torch.tensor:
# Only accepts 1-channel waveform input
wav = wav.view(wav.size(0), -1)
new_length = wav.size(-1) * self.output_rate // self.input_rate
indices = torch.arange(new_length) * (self.input_rate / self.output_rate)
round_down = wav[:, indices.long()]
round_up = wav[:, (indices.long() + 1).clamp(max=wav.size(-1) - 1)]
output = round_down * (1.0 - indices.fmod(1.0)).unsqueeze(0) + (
round_up * indices.fmod(1.0).unsqueeze(0)
)
return output
# MOS model
model = lightning_module.BaselineLightningModule.load_from_checkpoint(
"./src/epoch=3-step=7459.ckpt"
).eval()
# Get Speech Interval
def get_speech_interval(signal, db):
audio_interv = librosa.effects.split(signal, top_db=db)
pause_end = [x[0] for x in audio_interv[1:]]
pause_start = [x[1] for x in audio_interv[0:-1]]
pause_interv = [[x, y] for x, y in zip(pause_start, pause_end)]
return audio_interv, pause_interv
# plot UV
def plot_UV(signal, audio_interv, sr):
fig, ax = plt.subplots(nrows=2, sharex=True)
librosa.display.waveshow(signal, sr=sr, ax=ax[0])
uv_flag = np.zeros(len(signal))
for i in audio_interv:
uv_flag[i[0] : i[1]] = 1
ax[1].plot(np.arange(len(signal)) / sr, uv_flag, "r")
ax[1].set_ylim([-0.1, 1.1])
return fig
def calc_mos(_, audio_path, id, ref, pre_ppm, fig=None):
if audio_path == None:
audio_path = _
print("using ref audio as eval audio since it's empty")
wav, sr = torchaudio.load(audio_path)
if wav.shape[0] != 1:
wav = wav[0, :]
print(wav.shape)
osr = 16000
batch = wav.unsqueeze(0).repeat(10, 1, 1)
csr = ChangeSampleRate(sr, osr)
out_wavs = csr(wav)
# ASR
trans = jiwer.ToLowerCase()(p(audio_path)["text"])
# WER
wer = jiwer.wer(
ref,
trans,
truth_transform=transformation,
hypothesis_transform=transformation,
)
# MOS
batch = {
"wav": out_wavs,
"domains": torch.tensor([0]),
"judge_id": torch.tensor([288]),
}
with torch.no_grad():
output = model(batch)
predic_mos = output.mean(dim=1).squeeze().detach().numpy() * 2 + 3
# Phonemes per minute (PPM)
with torch.no_grad():
logits = phoneme_model(out_wavs).logits
phone_predicted_ids = torch.argmax(logits, dim=-1)
phone_transcription = processor.batch_decode(phone_predicted_ids)
lst_phonemes = phone_transcription[0].split(" ")
# VAD for pause detection
wav_vad = torchaudio.functional.vad(wav, sample_rate=sr)
# pdb.set_trace()
a_h, p_h = get_speech_interval(wav_vad.numpy(), db=40)
# print(a_h)
# print(len(a_h))
fig_h = plot_UV(wav_vad.numpy().squeeze(), a_h, sr=sr)
ppm = len(lst_phonemes) / (wav_vad.shape[-1] / sr) * 60
error_msg = "!!! ERROR MESSAGE !!!\n"
if audio_path == _ or audio_path == None:
error_msg += "ERROR: Fail recording, Please start from the beginning again."
return (
fig_h,
predic_mos,
trans,
wer,
phone_transcription,
ppm,
error_msg,
)
if ppm >= float(pre_ppm) + float(config["thre"]["maxppm"]):
error_msg += "ERROR: Please speak slower.\n"
elif ppm <= float(pre_ppm) - float(config["thre"]["minppm"]):
error_msg += "ERROR: Please speak faster.\n"
elif predic_mos <= float(config["thre"]["AUTOMOS"]):
error_msg += "ERROR: Naturalness is too low, Please try again.\n"
elif wer >= float(config["thre"]["WER"]):
error_msg += "ERROR: Intelligibility is too low, Please try again\n"
else:
error_msg = (
"GOOD JOB! Please 【Save the Recording】.\nYou can start recording the next sample."
)
return (
fig_h,
predic_mos,
trans,
wer,
phone_transcription,
ppm,
error_msg,
)
with open("src/description.html", "r", encoding="utf-8") as f:
description = f.read()
# description
refs_ppm = np.array(ref_feature[:, -1][1:], dtype="str")
reference_id = gr.Textbox(value="ID", placeholder="Utter ID", label="Reference_ID", visible=False)
reference_textbox = gr.Textbox(
value="Input reference here",
placeholder="Input reference here",
label="Reference",
)
reference_PPM = gr.Textbox(placeholder="Pneumatic Voice's PPM", label="Ref PPM", visible=False)
# Flagging setup
# Interface
# Participant Information
def record_part_info(name, gender, first_lng):
message = "Participant information is successfully collected."
id_str = "%s_%s_%s" % (name, gender[0], first_lng[0])
if name == None:
message = "ERROR: Name Information incomplete!"
id_str = "ERROR"
if gender == None:
message = "ERROR: Please select gender"
id_str = "ERROR"
if len(gender) > 1:
message = "ERROR: Please select one gender only"
id_str = "ERROR"
if first_lng == None:
message = "ERROR: Please select your english proficiency"
id_str = "ERROR"
if len(first_lng) > 1:
message = "ERROR: Please select one english proficiency only"
id_str = "ERROR"
return message, id_str
# information page not using now
name = gr.Textbox(placeholder="Name", label="Name")
gender = gr.CheckboxGroup(["Male", "Female"], label="gender")
first_lng = gr.CheckboxGroup(
[
"B1 Intermediate",
"B2: Upper Intermediate",
"C1: Advanced",
"C2: Proficient",
],
label="English Proficiency (CEFR)",
)
msg = gr.Textbox(placeholder="Evaluation for valid participant", label="message")
id_str = gr.Textbox(placeholder="participant id", label="participant_id")
info = gr.Interface(
fn=record_part_info,
inputs=[name, gender, first_lng],
outputs=[msg, id_str],
title="Participant Information Page",
allow_flagging="never",
css="body {background-color: blue}",
)
# Experiment
if config["exp_id"] == None:
config["exp_id"] = Path(config_yaml).stem
## This is the theme for the interface
css = """
.ref_text textarea {font-size: 40px !important}
.message textarea {font-size: 40px !important}
"""
my_theme = gr.themes.Default().set(
button_primary_background_fill="#75DA99",
button_primary_background_fill_dark="#DEF2D7",
button_primary_text_color="black",
button_secondary_text_color="black",
)
# Callback for saving the recording
callback = gr.CSVLogger()
with gr.Blocks(css=css, theme=my_theme) as demo:
with gr.Column():
with gr.Row():
ref_audio = gr.Audio(
source="microphone",
type="filepath",
label="Reference_Audio",
container=True,
interactive=False,
visible=False,
)
with gr.Row():
eval_audio = gr.Audio(
source="microphone",
type="filepath",
container=True,
label="Audio_to_Evaluate",
)
b_redo = gr.ClearButton(
value="Redo", variant="stop", components=[eval_audio], size="sm"
)
reference_textbox = gr.Textbox(
value="Input reference here",
placeholder="Input reference here",
label="Reference",
interactive=True,
elem_classes="ref_text",
)
with gr.Accordion("Input for Development", open=False):
reference_id = gr.Textbox(
value="ID",
placeholder="Utter ID",
label="Reference_ID",
visible=True,
)
reference_PPM = gr.Textbox(
placeholder="Pneumatic Voice's PPM",
label="Ref PPM",
visible=True,
)
with gr.Row():
b = gr.Button(value="1.Submit", variant="primary", elem_classes="submit")
# TODO
# b_more = gr.Button(value="Show More", elem_classes="verbose")
with gr.Row():
inputs = [
ref_audio,
eval_audio,
reference_id,
reference_textbox,
reference_PPM,
]
e = gr.Examples(examples, inputs, examples_per_page=5)
with gr.Column():
with gr.Row():
## output block
msg = gr.Textbox(
placeholder="Recording Feedback",
label="Message",
interactive=False,
elem_classes="message",
)
with gr.Accordion("Output for Development", open=False):
wav_plot = gr.Plot(PlaceHolder="Wav/Pause Plot", label="wav_pause_plot", visible=True)
predict_mos = gr.Textbox(
placeholder="Predicted MOS",
label="Predicted MOS",
visible=True,
)
hyp = gr.Textbox(placeholder="Hypothesis", label="Hypothesis", visible=True)
wer = gr.Textbox(placeholder="Word Error Rate", label="WER", visible=True)
predict_pho = gr.Textbox(
placeholder="Predicted Phonemes",
label="Predicted Phonemes",
visible=True,
)
ppm = gr.Textbox(
placeholder="Phonemes per minutes",
label="PPM",
visible=True,
)
outputs = [
wav_plot,
predict_mos,
hyp,
wer,
predict_pho,
ppm,
msg,
]
# b = gr.Button("Submit")
b.click(fn=calc_mos, inputs=inputs, outputs=outputs, api_name="Submit")
# Logger
callback.setup(
components=[
eval_audio,
reference_id,
reference_textbox,
reference_PPM,
predict_mos,
hyp,
wer,
ppm,
msg],
flagging_dir="./exp/%s" % config["exp_id"],
)
with gr.Row():
b2 = gr.Button("2. Save the Recording", variant="primary", elem_id="save")
js_confirmed_saving = "(x) => confirm('Recording Saved!')"
# eval_audio,
b2.click(
lambda *args: callback.flag(args),
inputs=[
eval_audio,
reference_id,
reference_textbox,
reference_PPM,
predict_mos,
hyp,
wer,
ppm,
msg,
],
outputs=None,
preprocess=False,
api_name="flagging",
)
with gr.Row():
b3 = gr.ClearButton(
[
ref_audio,
eval_audio,
reference_id,
reference_textbox,
reference_PPM,
predict_mos,
hyp,
wer,
ppm,
msg,
],
value="3.Clear All",
elem_id="clear",
)
demo.launch(share=True) |