File size: 14,609 Bytes
4817bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from synthesizer import audio
from synthesizer.models.tacotron import Tacotron
from synthesizer.synthesizer_dataset import SynthesizerDataset, collate_synthesizer
from synthesizer.utils import ValueWindow, data_parallel_workaround
from synthesizer.utils.plot import plot_spectrogram, plot_spectrogram_and_trace
from synthesizer.utils.symbols import symbols
from synthesizer.utils.text import sequence_to_text
from vocoder.display import *
from datetime import datetime
import json
import numpy as np
from pathlib import Path
import time
import os

def np_now(x: torch.Tensor): return x.detach().cpu().numpy()

def time_string():
    return datetime.now().strftime("%Y-%m-%d %H:%M")

def train(run_id: str, syn_dir: str, models_dir: str, save_every: int,
         backup_every: int, log_every:int, force_restart:bool, hparams):

    syn_dir = Path(syn_dir)
    models_dir = Path(models_dir)
    models_dir.mkdir(exist_ok=True)

    model_dir = models_dir.joinpath(run_id)
    plot_dir = model_dir.joinpath("plots")
    wav_dir = model_dir.joinpath("wavs")
    mel_output_dir = model_dir.joinpath("mel-spectrograms")
    meta_folder = model_dir.joinpath("metas")
    model_dir.mkdir(exist_ok=True)
    plot_dir.mkdir(exist_ok=True)
    wav_dir.mkdir(exist_ok=True)
    mel_output_dir.mkdir(exist_ok=True)
    meta_folder.mkdir(exist_ok=True)
    
    weights_fpath = model_dir.joinpath(run_id).with_suffix(".pt")
    metadata_fpath = syn_dir.joinpath("train.txt")
    
    print("Checkpoint path: {}".format(weights_fpath))
    print("Loading training data from: {}".format(metadata_fpath))
    print("Using model: Tacotron")
    
    # Book keeping
    step = 0
    time_window = ValueWindow(100)
    loss_window = ValueWindow(100)
    
    
    # From WaveRNN/train_tacotron.py
    if torch.cuda.is_available():
        device = torch.device("cuda")

        for session in hparams.tts_schedule:
            _, _, _, batch_size = session
            if batch_size % torch.cuda.device_count() != 0:
                raise ValueError("`batch_size` must be evenly divisible by n_gpus!")
    else:
        device = torch.device("cpu")
    print("Using device:", device)

    # Instantiate Tacotron Model
    print("\nInitialising Tacotron Model...\n")
    num_chars = len(symbols)
    if weights_fpath.exists():
        # for compatibility purpose, change symbols accordingly:
        loaded_shape = torch.load(str(weights_fpath), map_location=device)["model_state"]["encoder.embedding.weight"].shape
        if num_chars != loaded_shape[0]:
            print("WARNING: you are using compatible mode due to wrong sympols length, please modify varible _characters in `utils\symbols.py`")
            num_chars != loaded_shape[0]
                # Try to scan config file
        model_config_fpaths = list(weights_fpath.parent.rglob("*.json"))
        if len(model_config_fpaths)>0 and model_config_fpaths[0].exists():
            with model_config_fpaths[0].open("r", encoding="utf-8") as f:
                hparams.loadJson(json.load(f))
        else:  # save a config
            hparams.dumpJson(weights_fpath.parent.joinpath(run_id).with_suffix(".json"))


    model = Tacotron(embed_dims=hparams.tts_embed_dims,
                     num_chars=num_chars,
                     encoder_dims=hparams.tts_encoder_dims,
                     decoder_dims=hparams.tts_decoder_dims,
                     n_mels=hparams.num_mels,
                     fft_bins=hparams.num_mels,
                     postnet_dims=hparams.tts_postnet_dims,
                     encoder_K=hparams.tts_encoder_K,
                     lstm_dims=hparams.tts_lstm_dims,
                     postnet_K=hparams.tts_postnet_K,
                     num_highways=hparams.tts_num_highways,
                     dropout=hparams.tts_dropout,
                     stop_threshold=hparams.tts_stop_threshold,
                     speaker_embedding_size=hparams.speaker_embedding_size).to(device)

    # Initialize the optimizer
    optimizer = optim.Adam(model.parameters(), amsgrad=True)

    # Load the weights
    if force_restart or not weights_fpath.exists():
        print("\nStarting the training of Tacotron from scratch\n")
        model.save(weights_fpath)

        # Embeddings metadata
        char_embedding_fpath = meta_folder.joinpath("CharacterEmbeddings.tsv")
        with open(char_embedding_fpath, "w", encoding="utf-8") as f:
            for symbol in symbols:
                if symbol == " ":
                    symbol = "\\s"  # For visual purposes, swap space with \s

                f.write("{}\n".format(symbol))

    else:
        print("\nLoading weights at %s" % weights_fpath)
        model.load(weights_fpath, device, optimizer)
        print("Tacotron weights loaded from step %d" % model.step)
    
    # Initialize the dataset
    metadata_fpath = syn_dir.joinpath("train.txt")
    mel_dir = syn_dir.joinpath("mels")
    embed_dir = syn_dir.joinpath("embeds")
    dataset = SynthesizerDataset(metadata_fpath, mel_dir, embed_dir, hparams)
    test_loader = DataLoader(dataset,
                             batch_size=1,
                             shuffle=True,
                             pin_memory=True)

    # tracing training step
    sw = SummaryWriter(log_dir=model_dir.joinpath("logs"))

    for i, session in enumerate(hparams.tts_schedule):
        current_step = model.get_step()

        r, lr, max_step, batch_size = session

        training_steps = max_step - current_step

        # Do we need to change to the next session?
        if current_step >= max_step:
            # Are there no further sessions than the current one?
            if i == len(hparams.tts_schedule) - 1:
                # We have completed training. Save the model and exit
                model.save(weights_fpath, optimizer)
                break
            else:
                # There is a following session, go to it
                continue

        model.r = r
        # Begin the training
        simple_table([(f"Steps with r={r}", str(training_steps // 1000) + "k Steps"),
                      ("Batch Size", batch_size),
                      ("Learning Rate", lr),
                      ("Outputs/Step (r)", model.r)])

        for p in optimizer.param_groups:
            p["lr"] = lr
        if hparams.tts_finetune_layers is not None and len(hparams.tts_finetune_layers) > 0:
            model.finetune_partial(hparams.tts_finetune_layers)

        data_loader = DataLoader(dataset,
                                 collate_fn=collate_synthesizer,
                                 batch_size=batch_size, #change if you got graphic card OOM
                                 num_workers=2,
                                 shuffle=True,
                                 pin_memory=True)

        total_iters = len(dataset) 
        steps_per_epoch = np.ceil(total_iters / batch_size).astype(np.int32)
        epochs = np.ceil(training_steps / steps_per_epoch).astype(np.int32)

        for epoch in range(1, epochs+1):
            for i, (texts, mels, embeds, idx) in enumerate(data_loader, 1):
                start_time = time.time()

                # Generate stop tokens for training
                stop = torch.ones(mels.shape[0], mels.shape[2])
                for j, k in enumerate(idx):
                    stop[j, :int(dataset.metadata[k][4])-1] = 0

                texts = texts.to(device)
                mels = mels.to(device)
                embeds = embeds.to(device)
                stop = stop.to(device)

                # Forward pass
                # Parallelize model onto GPUS using workaround due to python bug
                if device.type == "cuda" and torch.cuda.device_count() > 1:
                    m1_hat, m2_hat, attention, stop_pred = data_parallel_workaround(model, texts,
                                                                                    mels, embeds)
                else:
                    m1_hat, m2_hat, attention, stop_pred = model(texts, mels, embeds)

                # Backward pass
                m1_loss = F.mse_loss(m1_hat, mels) + F.l1_loss(m1_hat, mels)
                m2_loss = F.mse_loss(m2_hat, mels)
                stop_loss = F.binary_cross_entropy(stop_pred, stop)

                loss = m1_loss + m2_loss + stop_loss

                optimizer.zero_grad()
                loss.backward()

                if hparams.tts_clip_grad_norm is not None:
                    grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hparams.tts_clip_grad_norm)
                    if np.isnan(grad_norm.cpu()):
                        print("grad_norm was NaN!")

                optimizer.step()

                time_window.append(time.time() - start_time)
                loss_window.append(loss.item())

                step = model.get_step()
                k = step // 1000

                
                msg = f"| Epoch: {epoch}/{epochs} ({i}/{steps_per_epoch}) | Loss: {loss_window.average:#.4} | {1./time_window.average:#.2} steps/s | Step: {k}k | "
                stream(msg)

                if log_every != 0 and step % log_every == 0 :
                    sw.add_scalar("training/loss", loss_window.average, step)

                # Backup or save model as appropriate
                if backup_every != 0 and step % backup_every == 0 : 
                    backup_fpath = Path("{}/{}_{}.pt".format(str(weights_fpath.parent), run_id, step))
                    model.save(backup_fpath, optimizer)

                if save_every != 0 and step % save_every == 0 : 
                    # Must save latest optimizer state to ensure that resuming training
                    # doesn't produce artifacts
                    model.save(weights_fpath, optimizer)
                    

                # Evaluate model to generate samples
                epoch_eval = hparams.tts_eval_interval == -1 and i == steps_per_epoch  # If epoch is done
                step_eval = hparams.tts_eval_interval > 0 and step % hparams.tts_eval_interval == 0  # Every N steps
                if epoch_eval or step_eval:
                    for sample_idx in range(hparams.tts_eval_num_samples):
                        # At most, generate samples equal to number in the batch
                        if sample_idx + 1 <= len(texts):
                            # Remove padding from mels using frame length in metadata
                            mel_length = int(dataset.metadata[idx[sample_idx]][4])
                            mel_prediction = np_now(m2_hat[sample_idx]).T[:mel_length]
                            target_spectrogram = np_now(mels[sample_idx]).T[:mel_length]
                            attention_len = mel_length // model.r
                            # eval_loss = F.mse_loss(mel_prediction, target_spectrogram)
                            # sw.add_scalar("validing/loss", eval_loss.item(), step)
                            eval_model(attention=np_now(attention[sample_idx][:, :attention_len]),
                                       mel_prediction=mel_prediction,
                                       target_spectrogram=target_spectrogram,
                                       input_seq=np_now(texts[sample_idx]),
                                       step=step,
                                       plot_dir=plot_dir,
                                       mel_output_dir=mel_output_dir,
                                       wav_dir=wav_dir,
                                       sample_num=sample_idx + 1,
                                       loss=loss,
                                       hparams=hparams,
                                       sw=sw)
                    MAX_SAVED_COUNT = 20
                    if (step / hparams.tts_eval_interval) % MAX_SAVED_COUNT == 0:
                        # clean up and save last MAX_SAVED_COUNT;
                        plots = next(os.walk(plot_dir), (None, None, []))[2]
                        for plot in plots[-MAX_SAVED_COUNT:]:
                            os.remove(plot_dir.joinpath(plot))
                        mel_files = next(os.walk(mel_output_dir), (None, None, []))[2]
                        for mel_file in mel_files[-MAX_SAVED_COUNT:]:
                            os.remove(mel_output_dir.joinpath(mel_file))
                        wavs = next(os.walk(wav_dir), (None, None, []))[2]
                        for w in wavs[-MAX_SAVED_COUNT:]:
                            os.remove(wav_dir.joinpath(w))
                        
                # Break out of loop to update training schedule
                if step >= max_step:
                    break

            # Add line break after every epoch
            print("")

def eval_model(attention, mel_prediction, target_spectrogram, input_seq, step,
               plot_dir, mel_output_dir, wav_dir, sample_num, loss, hparams, sw):
    # Save some results for evaluation
    attention_path = str(plot_dir.joinpath("attention_step_{}_sample_{}".format(step, sample_num)))
    # save_attention(attention, attention_path)
    save_and_trace_attention(attention, attention_path, sw, step)

    # save predicted mel spectrogram to disk (debug)
    mel_output_fpath = mel_output_dir.joinpath("mel-prediction-step-{}_sample_{}.npy".format(step, sample_num))
    np.save(str(mel_output_fpath), mel_prediction, allow_pickle=False)

    # save griffin lim inverted wav for debug (mel -> wav)
    wav = audio.inv_mel_spectrogram(mel_prediction.T, hparams)
    wav_fpath = wav_dir.joinpath("step-{}-wave-from-mel_sample_{}.wav".format(step, sample_num))
    audio.save_wav(wav, str(wav_fpath), sr=hparams.sample_rate)

    # save real and predicted mel-spectrogram plot to disk (control purposes)
    spec_fpath = plot_dir.joinpath("step-{}-mel-spectrogram_sample_{}.png".format(step, sample_num))
    title_str = "{}, {}, step={}, loss={:.5f}".format("Tacotron", time_string(), step, loss)
    # plot_spectrogram(mel_prediction, str(spec_fpath), title=title_str,
    #                  target_spectrogram=target_spectrogram,
    #                  max_len=target_spectrogram.size // hparams.num_mels)
    plot_spectrogram_and_trace(
        mel_prediction, 
        str(spec_fpath), 
        title=title_str,
        target_spectrogram=target_spectrogram,
        max_len=target_spectrogram.size // hparams.num_mels,
        sw=sw,
        step=step)
    print("Input at step {}: {}".format(step, sequence_to_text(input_seq)))