File size: 13,859 Bytes
4817bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#!/usr/bin/env python3

# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Common functions for ASR."""

import argparse
import editdistance
import json
import logging
import numpy as np
import six
import sys

from itertools import groupby


def end_detect(ended_hyps, i, M=3, D_end=np.log(1 * np.exp(-10))):
    """End detection.

    desribed in Eq. (50) of S. Watanabe et al
    "Hybrid CTC/Attention Architecture for End-to-End Speech Recognition"

    :param ended_hyps:
    :param i:
    :param M:
    :param D_end:
    :return:
    """
    if len(ended_hyps) == 0:
        return False
    count = 0
    best_hyp = sorted(ended_hyps, key=lambda x: x['score'], reverse=True)[0]
    for m in six.moves.range(M):
        # get ended_hyps with their length is i - m
        hyp_length = i - m
        hyps_same_length = [x for x in ended_hyps if len(x['yseq']) == hyp_length]
        if len(hyps_same_length) > 0:
            best_hyp_same_length = sorted(hyps_same_length, key=lambda x: x['score'], reverse=True)[0]
            if best_hyp_same_length['score'] - best_hyp['score'] < D_end:
                count += 1

    if count == M:
        return True
    else:
        return False


# TODO(takaaki-hori): add different smoothing methods
def label_smoothing_dist(odim, lsm_type, transcript=None, blank=0):
    """Obtain label distribution for loss smoothing.

    :param odim:
    :param lsm_type:
    :param blank:
    :param transcript:
    :return:
    """
    if transcript is not None:
        with open(transcript, 'rb') as f:
            trans_json = json.load(f)['utts']

    if lsm_type == 'unigram':
        assert transcript is not None, 'transcript is required for %s label smoothing' % lsm_type
        labelcount = np.zeros(odim)
        for k, v in trans_json.items():
            ids = np.array([int(n) for n in v['output'][0]['tokenid'].split()])
            # to avoid an error when there is no text in an uttrance
            if len(ids) > 0:
                labelcount[ids] += 1
        labelcount[odim - 1] = len(transcript)  # count <eos>
        labelcount[labelcount == 0] = 1  # flooring
        labelcount[blank] = 0  # remove counts for blank
        labeldist = labelcount.astype(np.float32) / np.sum(labelcount)
    else:
        logging.error(
            "Error: unexpected label smoothing type: %s" % lsm_type)
        sys.exit()

    return labeldist


def get_vgg2l_odim(idim, in_channel=3, out_channel=128, downsample=True):
    """Return the output size of the VGG frontend.

    :param in_channel: input channel size
    :param out_channel: output channel size
    :return: output size
    :rtype int
    """
    idim = idim / in_channel
    if downsample:
        idim = np.ceil(np.array(idim, dtype=np.float32) / 2)  # 1st max pooling
        idim = np.ceil(np.array(idim, dtype=np.float32) / 2)  # 2nd max pooling
    return int(idim) * out_channel  # numer of channels


class ErrorCalculator(object):
    """Calculate CER and WER for E2E_ASR and CTC models during training.

    :param y_hats: numpy array with predicted text
    :param y_pads: numpy array with true (target) text
    :param char_list:
    :param sym_space:
    :param sym_blank:
    :return:
    """

    def __init__(self, char_list, sym_space, sym_blank, report_cer=False, report_wer=False,
                 trans_type="char"):
        """Construct an ErrorCalculator object."""
        super(ErrorCalculator, self).__init__()

        self.report_cer = report_cer
        self.report_wer = report_wer
        self.trans_type = trans_type
        self.char_list = char_list
        self.space = sym_space
        self.blank = sym_blank
        self.idx_blank = self.char_list.index(self.blank)
        if self.space in self.char_list:
            self.idx_space = self.char_list.index(self.space)
        else:
            self.idx_space = None

    def __call__(self, ys_hat, ys_pad, is_ctc=False):
        """Calculate sentence-level WER/CER score.

        :param torch.Tensor ys_hat: prediction (batch, seqlen)
        :param torch.Tensor ys_pad: reference (batch, seqlen)
        :param bool is_ctc: calculate CER score for CTC
        :return: sentence-level WER score
        :rtype float
        :return: sentence-level CER score
        :rtype float
        """
        cer, wer = None, None
        if is_ctc:
            return self.calculate_cer_ctc(ys_hat, ys_pad)
        elif not self.report_cer and not self.report_wer:
            return cer, wer

        seqs_hat, seqs_true = self.convert_to_char(ys_hat, ys_pad)
        if self.report_cer:
            cer = self.calculate_cer(seqs_hat, seqs_true)

        if self.report_wer:
            wer = self.calculate_wer(seqs_hat, seqs_true)
        return cer, wer

    def calculate_cer_ctc(self, ys_hat, ys_pad):
        """Calculate sentence-level CER score for CTC.

        :param torch.Tensor ys_hat: prediction (batch, seqlen)
        :param torch.Tensor ys_pad: reference (batch, seqlen)
        :return: average sentence-level CER score
        :rtype float
        """
        cers, char_ref_lens = [], []
        for i, y in enumerate(ys_hat):
            y_hat = [x[0] for x in groupby(y)]
            y_true = ys_pad[i]
            seq_hat, seq_true = [], []
            for idx in y_hat:
                idx = int(idx)
                if idx != -1 and idx != self.idx_blank and idx != self.idx_space:
                    seq_hat.append(self.char_list[int(idx)])

            for idx in y_true:
                idx = int(idx)
                if idx != -1 and idx != self.idx_blank and idx != self.idx_space:
                    seq_true.append(self.char_list[int(idx)])
            if self.trans_type == "char":
                hyp_chars = "".join(seq_hat)
                ref_chars = "".join(seq_true)
            else:
                hyp_chars = " ".join(seq_hat)
                ref_chars = " ".join(seq_true)

            if len(ref_chars) > 0:
                cers.append(editdistance.eval(hyp_chars, ref_chars))
                char_ref_lens.append(len(ref_chars))

        cer_ctc = float(sum(cers)) / sum(char_ref_lens) if cers else None
        return cer_ctc

    def convert_to_char(self, ys_hat, ys_pad):
        """Convert index to character.

        :param torch.Tensor seqs_hat: prediction (batch, seqlen)
        :param torch.Tensor seqs_true: reference (batch, seqlen)
        :return: token list of prediction
        :rtype list
        :return: token list of reference
        :rtype list
        """
        seqs_hat, seqs_true = [], []
        for i, y_hat in enumerate(ys_hat):
            y_true = ys_pad[i]
            eos_true = np.where(y_true == -1)[0]
            eos_true = eos_true[0] if len(eos_true) > 0 else len(y_true)
            # To avoid wrong higher WER than the one obtained from the decoding
            # eos from y_true is used to mark the eos in y_hat
            # because of that y_hats has not padded outs with -1.
            seq_hat = [self.char_list[int(idx)] for idx in y_hat[:eos_true]]
            seq_true = [self.char_list[int(idx)] for idx in y_true if int(idx) != -1]
            # seq_hat_text = "".join(seq_hat).replace(self.space, ' ')
            seq_hat_text = " ".join(seq_hat).replace(self.space, ' ')
            seq_hat_text = seq_hat_text.replace(self.blank, '')
            # seq_true_text = "".join(seq_true).replace(self.space, ' ')
            seq_true_text = " ".join(seq_true).replace(self.space, ' ')
            seqs_hat.append(seq_hat_text)
            seqs_true.append(seq_true_text)
        return seqs_hat, seqs_true

    def calculate_cer(self, seqs_hat, seqs_true):
        """Calculate sentence-level CER score.

        :param list seqs_hat: prediction
        :param list seqs_true: reference
        :return: average sentence-level CER score
        :rtype float
        """
        char_eds, char_ref_lens = [], []
        for i, seq_hat_text in enumerate(seqs_hat):
            seq_true_text = seqs_true[i]
            hyp_chars = seq_hat_text.replace(' ', '')
            ref_chars = seq_true_text.replace(' ', '')
            char_eds.append(editdistance.eval(hyp_chars, ref_chars))
            char_ref_lens.append(len(ref_chars))
        return float(sum(char_eds)) / sum(char_ref_lens)

    def calculate_wer(self, seqs_hat, seqs_true):
        """Calculate sentence-level WER score.

        :param list seqs_hat: prediction
        :param list seqs_true: reference
        :return: average sentence-level WER score
        :rtype float
        """
        word_eds, word_ref_lens = [], []
        for i, seq_hat_text in enumerate(seqs_hat):
            seq_true_text = seqs_true[i]
            hyp_words = seq_hat_text.split()
            ref_words = seq_true_text.split()
            word_eds.append(editdistance.eval(hyp_words, ref_words))
            word_ref_lens.append(len(ref_words))
        return float(sum(word_eds)) / sum(word_ref_lens)


class ErrorCalculatorTrans(object):
    """Calculate CER and WER for transducer models.

    Args:
        decoder (nn.Module): decoder module
        args (Namespace): argument Namespace containing options
        report_cer (boolean): compute CER option
        report_wer (boolean): compute WER option

    """

    def __init__(self, decoder, args, report_cer=False, report_wer=False):
        """Construct an ErrorCalculator object for transducer model."""
        super(ErrorCalculatorTrans, self).__init__()

        self.dec = decoder

        recog_args = {'beam_size': args.beam_size,
                      'nbest': args.nbest,
                      'space': args.sym_space,
                      'score_norm_transducer': args.score_norm_transducer}

        self.recog_args = argparse.Namespace(**recog_args)

        self.char_list = args.char_list
        self.space = args.sym_space
        self.blank = args.sym_blank

        self.report_cer = args.report_cer
        self.report_wer = args.report_wer

    def __call__(self, hs_pad, ys_pad):
        """Calculate sentence-level WER/CER score for transducer models.

        Args:
            hs_pad (torch.Tensor): batch of padded input sequence (batch, T, D)
            ys_pad (torch.Tensor): reference (batch, seqlen)

        Returns:
            (float): sentence-level CER score
            (float): sentence-level WER score

        """
        cer, wer = None, None

        if not self.report_cer and not self.report_wer:
            return cer, wer

        batchsize = int(hs_pad.size(0))
        batch_nbest = []

        for b in six.moves.range(batchsize):
            if self.recog_args.beam_size == 1:
                nbest_hyps = self.dec.recognize(hs_pad[b], self.recog_args)
            else:
                nbest_hyps = self.dec.recognize_beam(hs_pad[b], self.recog_args)
            batch_nbest.append(nbest_hyps)

        ys_hat = [nbest_hyp[0]['yseq'][1:] for nbest_hyp in batch_nbest]

        seqs_hat, seqs_true = self.convert_to_char(ys_hat, ys_pad.cpu())

        if self.report_cer:
            cer = self.calculate_cer(seqs_hat, seqs_true)

        if self.report_wer:
            wer = self.calculate_wer(seqs_hat, seqs_true)

        return cer, wer

    def convert_to_char(self, ys_hat, ys_pad):
        """Convert index to character.

        Args:
            ys_hat (torch.Tensor): prediction (batch, seqlen)
            ys_pad (torch.Tensor): reference (batch, seqlen)

        Returns:
            (list): token list of prediction
            (list): token list of reference

        """
        seqs_hat, seqs_true = [], []

        for i, y_hat in enumerate(ys_hat):
            y_true = ys_pad[i]

            eos_true = np.where(y_true == -1)[0]
            eos_true = eos_true[0] if len(eos_true) > 0 else len(y_true)

            seq_hat = [self.char_list[int(idx)] for idx in y_hat[:eos_true]]
            seq_true = [self.char_list[int(idx)] for idx in y_true if int(idx) != -1]

            seq_hat_text = "".join(seq_hat).replace(self.space, ' ')
            seq_hat_text = seq_hat_text.replace(self.blank, '')
            seq_true_text = "".join(seq_true).replace(self.space, ' ')

            seqs_hat.append(seq_hat_text)
            seqs_true.append(seq_true_text)

        return seqs_hat, seqs_true

    def calculate_cer(self, seqs_hat, seqs_true):
        """Calculate sentence-level CER score for transducer model.

        Args:
            seqs_hat (torch.Tensor): prediction (batch, seqlen)
            seqs_true (torch.Tensor): reference (batch, seqlen)

        Returns:
            (float): average sentence-level CER score

        """
        char_eds, char_ref_lens = [], []

        for i, seq_hat_text in enumerate(seqs_hat):
            seq_true_text = seqs_true[i]
            hyp_chars = seq_hat_text.replace(' ', '')
            ref_chars = seq_true_text.replace(' ', '')

            char_eds.append(editdistance.eval(hyp_chars, ref_chars))
            char_ref_lens.append(len(ref_chars))

        return float(sum(char_eds)) / sum(char_ref_lens)

    def calculate_wer(self, seqs_hat, seqs_true):
        """Calculate sentence-level WER score for transducer model.

        Args:
            seqs_hat (torch.Tensor): prediction (batch, seqlen)
            seqs_true (torch.Tensor): reference (batch, seqlen)

        Returns:
            (float): average sentence-level WER score

        """
        word_eds, word_ref_lens = [], []

        for i, seq_hat_text in enumerate(seqs_hat):
            seq_true_text = seqs_true[i]
            hyp_words = seq_hat_text.split()
            ref_words = seq_true_text.split()

            word_eds.append(editdistance.eval(hyp_words, ref_words))
            word_ref_lens.append(len(ref_words))

        return float(sum(word_eds)) / sum(word_ref_lens)