File size: 5,514 Bytes
4817bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from pydantic import BaseModel, Field
import os
from pathlib import Path
from enum import Enum
from typing import Any, Tuple
import numpy as np
from utils.load_yaml import HpsYaml
from utils.util import AttrDict
import torch

# Constants
EXT_MODELS_DIRT = f"ppg_extractor{os.sep}saved_models"
CONV_MODELS_DIRT = f"ppg2mel{os.sep}saved_models"
ENC_MODELS_DIRT = f"encoder{os.sep}saved_models"


if os.path.isdir(EXT_MODELS_DIRT):    
    extractors =  Enum('extractors', list((file.name, file) for file in Path(EXT_MODELS_DIRT).glob("**/*.pt")))
    print("Loaded extractor models: " + str(len(extractors)))
else:
    raise Exception(f"Model folder {EXT_MODELS_DIRT} doesn't exist.")

if os.path.isdir(CONV_MODELS_DIRT):    
    convertors =  Enum('convertors', list((file.name, file) for file in Path(CONV_MODELS_DIRT).glob("**/*.pth")))
    print("Loaded convertor models: " + str(len(convertors)))
else:
    raise Exception(f"Model folder {CONV_MODELS_DIRT} doesn't exist.")

if os.path.isdir(ENC_MODELS_DIRT):    
    encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt")))
    print("Loaded encoders models: " + str(len(encoders)))
else:
    raise Exception(f"Model folder {ENC_MODELS_DIRT} doesn't exist.")

class Model(str, Enum):
    VC_PPG2MEL = "ppg2mel"

class Dataset(str, Enum):
    AIDATATANG_200ZH = "aidatatang_200zh"
    AIDATATANG_200ZH_S = "aidatatang_200zh_s"

class Input(BaseModel):
    # def render_input_ui(st, input) -> Dict: 
    #     input["selected_dataset"] = st.selectbox(
    #         '选择数据集', 
    #         ("aidatatang_200zh", "aidatatang_200zh_s")
    #     )
    # return input
    model: Model = Field(
        Model.VC_PPG2MEL, title="模型类型",
    )
    # datasets_root: str = Field(
    #     ..., alias="预处理数据根目录", description="输入目录(相对/绝对),不适用于ppg2mel模型",
    #     format=True,
    #     example="..\\trainning_data\\"
    # )
    output_root: str = Field(
        ..., alias="输出目录(可选)", description="建议不填,保持默认",
        format=True,
        example=""
    )
    continue_mode: bool = Field(
        True, alias="继续训练模式", description="选择“是”,则从下面选择的模型中继续训练",
    )
    gpu: bool = Field(
        True, alias="GPU训练", description="选择“是”,则使用GPU训练",
    )
    verbose: bool = Field(
        True, alias="打印详情", description="选择“是”,输出更多详情",
    )
    # TODO: Move to hiden fields by default
    convertor: convertors = Field(
        ..., alias="转换模型", 
        description="选择语音转换模型文件."
    )
    extractor: extractors = Field(
        ..., alias="特征提取模型", 
        description="选择PPG特征提取模型文件."
    )
    encoder: encoders = Field(
        ..., alias="语音编码模型", 
        description="选择语音编码模型文件."
    )
    njobs: int = Field(
        8, alias="进程数", description="适用于ppg2mel",
    )
    seed: int = Field(
        default=0, alias="初始随机数", description="适用于ppg2mel",
    )
    model_name: str = Field(
        ..., alias="新模型名", description="仅在重新训练时生效,选中继续训练时无效",
        example="test"
    )
    model_config: str = Field(
        ..., alias="新模型配置", description="仅在重新训练时生效,选中继续训练时无效",
        example=".\\ppg2mel\\saved_models\\seq2seq_mol_ppg2mel_vctk_libri_oneshotvc_r4_normMel_v2"
    )

class AudioEntity(BaseModel):
    content: bytes
    mel: Any

class Output(BaseModel):
    __root__: Tuple[str, int]

    def render_output_ui(self, streamlit_app, input) -> None:  # type: ignore
        """Custom output UI.
        If this method is implmeneted, it will be used instead of the default Output UI renderer.
        """
        sr, count = self.__root__
        streamlit_app.subheader(f"Dataset {sr} done processed total of {count}")

def train_vc(input: Input) -> Output:
    """Train VC(训练 VC)"""

    print(">>> OneShot VC training ...")
    params = AttrDict()
    params.update({
        "gpu": input.gpu,
        "cpu": not input.gpu,
        "njobs": input.njobs,
        "seed": input.seed,
        "verbose": input.verbose,
        "load": input.convertor.value,
        "warm_start": False,
    })
    if input.continue_mode: 
        # trace old model and config
        p = Path(input.convertor.value)
        params.name = p.parent.name
        # search a config file
        model_config_fpaths = list(p.parent.rglob("*.yaml"))
        if len(model_config_fpaths) == 0:
            raise "No model yaml config found for convertor"
        config = HpsYaml(model_config_fpaths[0])
        params.ckpdir = p.parent.parent
        params.config = model_config_fpaths[0]
        params.logdir = os.path.join(p.parent, "log")
    else:
        # Make the config dict dot visitable
        config = HpsYaml(input.config)    
    np.random.seed(input.seed)
    torch.manual_seed(input.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(input.seed)
    mode = "train"
    from ppg2mel.train.train_linglf02mel_seq2seq_oneshotvc import Solver
    solver = Solver(config, params, mode)
    solver.load_data()
    solver.set_model()
    solver.exec()
    print(">>> Oneshot VC train finished!")

    # TODO: pass useful return code
    return Output(__root__=(input.dataset, 0))