File size: 8,253 Bytes
4817bcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import random
import numpy as np
import torch
from utils.f0_utils import get_cont_lf0
import resampy
from .audio_utils import MAX_WAV_VALUE, load_wav, mel_spectrogram
from librosa.util import normalize
import os


SAMPLE_RATE=16000

def read_fids(fid_list_f):
    with open(fid_list_f, 'r') as f:
        fids = [l.strip().split()[0] for l in f if l.strip()]
    return fids   

class OneshotVcDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        meta_file: str,
        vctk_ppg_dir: str,
        libri_ppg_dir: str,
        vctk_f0_dir: str,
        libri_f0_dir: str,
        vctk_wav_dir: str,
        libri_wav_dir: str,
        vctk_spk_dvec_dir: str,
        libri_spk_dvec_dir: str,
        min_max_norm_mel: bool = False,
        mel_min: float = None,
        mel_max: float = None,
        ppg_file_ext: str = "ling_feat.npy",
        f0_file_ext: str = "f0.npy",
        wav_file_ext: str = "wav",
    ):
        self.fid_list = read_fids(meta_file)
        self.vctk_ppg_dir = vctk_ppg_dir
        self.libri_ppg_dir = libri_ppg_dir
        self.vctk_f0_dir = vctk_f0_dir
        self.libri_f0_dir = libri_f0_dir
        self.vctk_wav_dir = vctk_wav_dir
        self.libri_wav_dir = libri_wav_dir
        self.vctk_spk_dvec_dir = vctk_spk_dvec_dir
        self.libri_spk_dvec_dir = libri_spk_dvec_dir

        self.ppg_file_ext = ppg_file_ext
        self.f0_file_ext = f0_file_ext
        self.wav_file_ext = wav_file_ext

        self.min_max_norm_mel = min_max_norm_mel
        if min_max_norm_mel:
            print("[INFO] Min-Max normalize Melspec.")
            assert mel_min is not None
            assert mel_max is not None
            self.mel_max = mel_max
            self.mel_min = mel_min
        
        random.seed(1234)
        random.shuffle(self.fid_list)
        print(f'[INFO] Got {len(self.fid_list)} samples.')
        
    def __len__(self):
        return len(self.fid_list)
    
    def get_spk_dvec(self, fid):
        spk_name = fid
        if spk_name.startswith("p"):
            spk_dvec_path = f"{self.vctk_spk_dvec_dir}{os.sep}{spk_name}.npy"
        else:
            spk_dvec_path = f"{self.libri_spk_dvec_dir}{os.sep}{spk_name}.npy"
        return torch.from_numpy(np.load(spk_dvec_path))
    
    def compute_mel(self, wav_path):
        audio, sr = load_wav(wav_path)
        if sr != SAMPLE_RATE:
            audio = resampy.resample(audio, sr, SAMPLE_RATE)
        audio = audio / MAX_WAV_VALUE
        audio = normalize(audio) * 0.95
        audio = torch.FloatTensor(audio).unsqueeze(0)
        melspec = mel_spectrogram(
            audio,
            n_fft=1024,
            num_mels=80,
            sampling_rate=SAMPLE_RATE,
            hop_size=160,
            win_size=1024,
            fmin=80,
            fmax=8000,
        )
        return melspec.squeeze(0).numpy().T

    def bin_level_min_max_norm(self, melspec):
        # frequency bin level min-max normalization to [-4, 4]
        mel = (melspec - self.mel_min) / (self.mel_max - self.mel_min) * 8.0 - 4.0
        return np.clip(mel, -4., 4.)   

    def __getitem__(self, index):
        fid = self.fid_list[index]
        
        # 1. Load features
        if fid.startswith("p"):
            # vctk
            sub = fid.split("_")[0]
            ppg = np.load(f"{self.vctk_ppg_dir}{os.sep}{fid}.{self.ppg_file_ext}")
            f0 = np.load(f"{self.vctk_f0_dir}{os.sep}{fid}.{self.f0_file_ext}")
            mel = self.compute_mel(f"{self.vctk_wav_dir}{os.sep}{sub}{os.sep}{fid}.{self.wav_file_ext}")
        else:
            # aidatatang
            sub = fid[5:10]
            ppg = np.load(f"{self.libri_ppg_dir}{os.sep}{fid}.{self.ppg_file_ext}")
            f0 = np.load(f"{self.libri_f0_dir}{os.sep}{fid}.{self.f0_file_ext}")
            mel = self.compute_mel(f"{self.libri_wav_dir}{os.sep}{sub}{os.sep}{fid}.{self.wav_file_ext}")
        if self.min_max_norm_mel:
            mel = self.bin_level_min_max_norm(mel)
        
        f0, ppg, mel = self._adjust_lengths(f0, ppg, mel, fid)
        spk_dvec = self.get_spk_dvec(fid)

        # 2. Convert f0 to continuous log-f0 and u/v flags
        uv, cont_lf0 = get_cont_lf0(f0, 10.0, False)
        # cont_lf0 = (cont_lf0 - np.amin(cont_lf0)) / (np.amax(cont_lf0) - np.amin(cont_lf0))
        # cont_lf0 = self.utt_mvn(cont_lf0)
        lf0_uv = np.concatenate([cont_lf0[:, np.newaxis], uv[:, np.newaxis]], axis=1)

        # uv, cont_f0 = convert_continuous_f0(f0)
        # cont_f0 = (cont_f0 - np.amin(cont_f0)) / (np.amax(cont_f0) - np.amin(cont_f0))
        # lf0_uv = np.concatenate([cont_f0[:, np.newaxis], uv[:, np.newaxis]], axis=1)
        
        # 3. Convert numpy array to torch.tensor
        ppg = torch.from_numpy(ppg)
        lf0_uv = torch.from_numpy(lf0_uv)
        mel = torch.from_numpy(mel)
        
        return (ppg, lf0_uv, mel, spk_dvec, fid)

    def check_lengths(self, f0, ppg, mel, fid):
        LEN_THRESH = 10
        assert abs(len(ppg) - len(f0)) <= LEN_THRESH, \
            f"{abs(len(ppg) - len(f0))}: for file {fid}"
        assert abs(len(mel) - len(f0)) <= LEN_THRESH, \
            f"{abs(len(mel) - len(f0))}: for file {fid}"
    
    def _adjust_lengths(self, f0, ppg, mel, fid):
        self.check_lengths(f0, ppg, mel, fid)
        min_len = min(
            len(f0),
            len(ppg),
            len(mel),
        )
        f0 = f0[:min_len]
        ppg = ppg[:min_len]
        mel = mel[:min_len]
        return f0, ppg, mel

class MultiSpkVcCollate():
    """Zero-pads model inputs and targets based on number of frames per step
    """
    def __init__(self, n_frames_per_step=1, give_uttids=False,
                 f02ppg_length_ratio=1, use_spk_dvec=False):
        self.n_frames_per_step = n_frames_per_step
        self.give_uttids = give_uttids
        self.f02ppg_length_ratio = f02ppg_length_ratio
        self.use_spk_dvec = use_spk_dvec

    def __call__(self, batch):
        batch_size = len(batch)              
        # Prepare different features 
        ppgs = [x[0] for x in batch]
        lf0_uvs = [x[1] for x in batch]
        mels = [x[2] for x in batch]
        fids = [x[-1] for x in batch]
        if len(batch[0]) == 5:
            spk_ids = [x[3] for x in batch]
            if self.use_spk_dvec:
                # use d-vector
                spk_ids = torch.stack(spk_ids).float()
            else:
                # use one-hot ids
                spk_ids = torch.LongTensor(spk_ids)
        # Pad features into chunk
        ppg_lengths = [x.shape[0] for x in ppgs]
        mel_lengths = [x.shape[0] for x in mels]
        max_ppg_len = max(ppg_lengths)
        max_mel_len = max(mel_lengths)
        if max_mel_len % self.n_frames_per_step != 0:
            max_mel_len += (self.n_frames_per_step - max_mel_len % self.n_frames_per_step)
        ppg_dim = ppgs[0].shape[1]
        mel_dim = mels[0].shape[1]
        ppgs_padded = torch.FloatTensor(batch_size, max_ppg_len, ppg_dim).zero_()
        mels_padded = torch.FloatTensor(batch_size, max_mel_len, mel_dim).zero_()
        lf0_uvs_padded = torch.FloatTensor(batch_size, self.f02ppg_length_ratio * max_ppg_len, 2).zero_()
        stop_tokens = torch.FloatTensor(batch_size, max_mel_len).zero_()
        for i in range(batch_size):
            cur_ppg_len = ppgs[i].shape[0]
            cur_mel_len = mels[i].shape[0]
            ppgs_padded[i, :cur_ppg_len, :] = ppgs[i]
            lf0_uvs_padded[i, :self.f02ppg_length_ratio*cur_ppg_len, :] = lf0_uvs[i]
            mels_padded[i, :cur_mel_len, :] = mels[i]
            stop_tokens[i, cur_ppg_len-self.n_frames_per_step:] = 1
        if len(batch[0]) == 5:
            ret_tup = (ppgs_padded, lf0_uvs_padded, mels_padded, torch.LongTensor(ppg_lengths), \
                torch.LongTensor(mel_lengths), spk_ids, stop_tokens)
            if self.give_uttids:
                return ret_tup + (fids, )
            else:
                return ret_tup
        else:
            ret_tup = (ppgs_padded, lf0_uvs_padded, mels_padded, torch.LongTensor(ppg_lengths), \
                torch.LongTensor(mel_lengths), stop_tokens)
            if self.give_uttids:
                return ret_tup + (fids, )
            else:
                return ret_tup