Spaces:
Build error
Build error
File size: 8,253 Bytes
4817bcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import random
import numpy as np
import torch
from utils.f0_utils import get_cont_lf0
import resampy
from .audio_utils import MAX_WAV_VALUE, load_wav, mel_spectrogram
from librosa.util import normalize
import os
SAMPLE_RATE=16000
def read_fids(fid_list_f):
with open(fid_list_f, 'r') as f:
fids = [l.strip().split()[0] for l in f if l.strip()]
return fids
class OneshotVcDataset(torch.utils.data.Dataset):
def __init__(
self,
meta_file: str,
vctk_ppg_dir: str,
libri_ppg_dir: str,
vctk_f0_dir: str,
libri_f0_dir: str,
vctk_wav_dir: str,
libri_wav_dir: str,
vctk_spk_dvec_dir: str,
libri_spk_dvec_dir: str,
min_max_norm_mel: bool = False,
mel_min: float = None,
mel_max: float = None,
ppg_file_ext: str = "ling_feat.npy",
f0_file_ext: str = "f0.npy",
wav_file_ext: str = "wav",
):
self.fid_list = read_fids(meta_file)
self.vctk_ppg_dir = vctk_ppg_dir
self.libri_ppg_dir = libri_ppg_dir
self.vctk_f0_dir = vctk_f0_dir
self.libri_f0_dir = libri_f0_dir
self.vctk_wav_dir = vctk_wav_dir
self.libri_wav_dir = libri_wav_dir
self.vctk_spk_dvec_dir = vctk_spk_dvec_dir
self.libri_spk_dvec_dir = libri_spk_dvec_dir
self.ppg_file_ext = ppg_file_ext
self.f0_file_ext = f0_file_ext
self.wav_file_ext = wav_file_ext
self.min_max_norm_mel = min_max_norm_mel
if min_max_norm_mel:
print("[INFO] Min-Max normalize Melspec.")
assert mel_min is not None
assert mel_max is not None
self.mel_max = mel_max
self.mel_min = mel_min
random.seed(1234)
random.shuffle(self.fid_list)
print(f'[INFO] Got {len(self.fid_list)} samples.')
def __len__(self):
return len(self.fid_list)
def get_spk_dvec(self, fid):
spk_name = fid
if spk_name.startswith("p"):
spk_dvec_path = f"{self.vctk_spk_dvec_dir}{os.sep}{spk_name}.npy"
else:
spk_dvec_path = f"{self.libri_spk_dvec_dir}{os.sep}{spk_name}.npy"
return torch.from_numpy(np.load(spk_dvec_path))
def compute_mel(self, wav_path):
audio, sr = load_wav(wav_path)
if sr != SAMPLE_RATE:
audio = resampy.resample(audio, sr, SAMPLE_RATE)
audio = audio / MAX_WAV_VALUE
audio = normalize(audio) * 0.95
audio = torch.FloatTensor(audio).unsqueeze(0)
melspec = mel_spectrogram(
audio,
n_fft=1024,
num_mels=80,
sampling_rate=SAMPLE_RATE,
hop_size=160,
win_size=1024,
fmin=80,
fmax=8000,
)
return melspec.squeeze(0).numpy().T
def bin_level_min_max_norm(self, melspec):
# frequency bin level min-max normalization to [-4, 4]
mel = (melspec - self.mel_min) / (self.mel_max - self.mel_min) * 8.0 - 4.0
return np.clip(mel, -4., 4.)
def __getitem__(self, index):
fid = self.fid_list[index]
# 1. Load features
if fid.startswith("p"):
# vctk
sub = fid.split("_")[0]
ppg = np.load(f"{self.vctk_ppg_dir}{os.sep}{fid}.{self.ppg_file_ext}")
f0 = np.load(f"{self.vctk_f0_dir}{os.sep}{fid}.{self.f0_file_ext}")
mel = self.compute_mel(f"{self.vctk_wav_dir}{os.sep}{sub}{os.sep}{fid}.{self.wav_file_ext}")
else:
# aidatatang
sub = fid[5:10]
ppg = np.load(f"{self.libri_ppg_dir}{os.sep}{fid}.{self.ppg_file_ext}")
f0 = np.load(f"{self.libri_f0_dir}{os.sep}{fid}.{self.f0_file_ext}")
mel = self.compute_mel(f"{self.libri_wav_dir}{os.sep}{sub}{os.sep}{fid}.{self.wav_file_ext}")
if self.min_max_norm_mel:
mel = self.bin_level_min_max_norm(mel)
f0, ppg, mel = self._adjust_lengths(f0, ppg, mel, fid)
spk_dvec = self.get_spk_dvec(fid)
# 2. Convert f0 to continuous log-f0 and u/v flags
uv, cont_lf0 = get_cont_lf0(f0, 10.0, False)
# cont_lf0 = (cont_lf0 - np.amin(cont_lf0)) / (np.amax(cont_lf0) - np.amin(cont_lf0))
# cont_lf0 = self.utt_mvn(cont_lf0)
lf0_uv = np.concatenate([cont_lf0[:, np.newaxis], uv[:, np.newaxis]], axis=1)
# uv, cont_f0 = convert_continuous_f0(f0)
# cont_f0 = (cont_f0 - np.amin(cont_f0)) / (np.amax(cont_f0) - np.amin(cont_f0))
# lf0_uv = np.concatenate([cont_f0[:, np.newaxis], uv[:, np.newaxis]], axis=1)
# 3. Convert numpy array to torch.tensor
ppg = torch.from_numpy(ppg)
lf0_uv = torch.from_numpy(lf0_uv)
mel = torch.from_numpy(mel)
return (ppg, lf0_uv, mel, spk_dvec, fid)
def check_lengths(self, f0, ppg, mel, fid):
LEN_THRESH = 10
assert abs(len(ppg) - len(f0)) <= LEN_THRESH, \
f"{abs(len(ppg) - len(f0))}: for file {fid}"
assert abs(len(mel) - len(f0)) <= LEN_THRESH, \
f"{abs(len(mel) - len(f0))}: for file {fid}"
def _adjust_lengths(self, f0, ppg, mel, fid):
self.check_lengths(f0, ppg, mel, fid)
min_len = min(
len(f0),
len(ppg),
len(mel),
)
f0 = f0[:min_len]
ppg = ppg[:min_len]
mel = mel[:min_len]
return f0, ppg, mel
class MultiSpkVcCollate():
"""Zero-pads model inputs and targets based on number of frames per step
"""
def __init__(self, n_frames_per_step=1, give_uttids=False,
f02ppg_length_ratio=1, use_spk_dvec=False):
self.n_frames_per_step = n_frames_per_step
self.give_uttids = give_uttids
self.f02ppg_length_ratio = f02ppg_length_ratio
self.use_spk_dvec = use_spk_dvec
def __call__(self, batch):
batch_size = len(batch)
# Prepare different features
ppgs = [x[0] for x in batch]
lf0_uvs = [x[1] for x in batch]
mels = [x[2] for x in batch]
fids = [x[-1] for x in batch]
if len(batch[0]) == 5:
spk_ids = [x[3] for x in batch]
if self.use_spk_dvec:
# use d-vector
spk_ids = torch.stack(spk_ids).float()
else:
# use one-hot ids
spk_ids = torch.LongTensor(spk_ids)
# Pad features into chunk
ppg_lengths = [x.shape[0] for x in ppgs]
mel_lengths = [x.shape[0] for x in mels]
max_ppg_len = max(ppg_lengths)
max_mel_len = max(mel_lengths)
if max_mel_len % self.n_frames_per_step != 0:
max_mel_len += (self.n_frames_per_step - max_mel_len % self.n_frames_per_step)
ppg_dim = ppgs[0].shape[1]
mel_dim = mels[0].shape[1]
ppgs_padded = torch.FloatTensor(batch_size, max_ppg_len, ppg_dim).zero_()
mels_padded = torch.FloatTensor(batch_size, max_mel_len, mel_dim).zero_()
lf0_uvs_padded = torch.FloatTensor(batch_size, self.f02ppg_length_ratio * max_ppg_len, 2).zero_()
stop_tokens = torch.FloatTensor(batch_size, max_mel_len).zero_()
for i in range(batch_size):
cur_ppg_len = ppgs[i].shape[0]
cur_mel_len = mels[i].shape[0]
ppgs_padded[i, :cur_ppg_len, :] = ppgs[i]
lf0_uvs_padded[i, :self.f02ppg_length_ratio*cur_ppg_len, :] = lf0_uvs[i]
mels_padded[i, :cur_mel_len, :] = mels[i]
stop_tokens[i, cur_ppg_len-self.n_frames_per_step:] = 1
if len(batch[0]) == 5:
ret_tup = (ppgs_padded, lf0_uvs_padded, mels_padded, torch.LongTensor(ppg_lengths), \
torch.LongTensor(mel_lengths), spk_ids, stop_tokens)
if self.give_uttids:
return ret_tup + (fids, )
else:
return ret_tup
else:
ret_tup = (ppgs_padded, lf0_uvs_padded, mels_padded, torch.LongTensor(ppg_lengths), \
torch.LongTensor(mel_lengths), stop_tokens)
if self.give_uttids:
return ret_tup + (fids, )
else:
return ret_tup
|