Spaces:
Build error
Build error
File size: 7,946 Bytes
4817bcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
#!/usr/bin/env python3
# Copyright 2020 Songxiang Liu
# Apache 2.0
from typing import List
import torch
import torch.nn.functional as F
import numpy as np
from .utils.abs_model import AbsMelDecoder
from .rnn_decoder_mol import Decoder
from .utils.cnn_postnet import Postnet
from .utils.vc_utils import get_mask_from_lengths
from utils.load_yaml import HpsYaml
class MelDecoderMOLv2(AbsMelDecoder):
"""Use an encoder to preprocess ppg."""
def __init__(
self,
num_speakers: int,
spk_embed_dim: int,
bottle_neck_feature_dim: int,
encoder_dim: int = 256,
encoder_downsample_rates: List = [2, 2],
attention_rnn_dim: int = 512,
decoder_rnn_dim: int = 512,
num_decoder_rnn_layer: int = 1,
concat_context_to_last: bool = True,
prenet_dims: List = [256, 128],
num_mixtures: int = 5,
frames_per_step: int = 2,
mask_padding: bool = True,
):
super().__init__()
self.mask_padding = mask_padding
self.bottle_neck_feature_dim = bottle_neck_feature_dim
self.num_mels = 80
self.encoder_down_factor=np.cumprod(encoder_downsample_rates)[-1]
self.frames_per_step = frames_per_step
self.use_spk_dvec = True
input_dim = bottle_neck_feature_dim
# Downsampling convolution
self.bnf_prenet = torch.nn.Sequential(
torch.nn.Conv1d(input_dim, encoder_dim, kernel_size=1, bias=False),
torch.nn.LeakyReLU(0.1),
torch.nn.InstanceNorm1d(encoder_dim, affine=False),
torch.nn.Conv1d(
encoder_dim, encoder_dim,
kernel_size=2*encoder_downsample_rates[0],
stride=encoder_downsample_rates[0],
padding=encoder_downsample_rates[0]//2,
),
torch.nn.LeakyReLU(0.1),
torch.nn.InstanceNorm1d(encoder_dim, affine=False),
torch.nn.Conv1d(
encoder_dim, encoder_dim,
kernel_size=2*encoder_downsample_rates[1],
stride=encoder_downsample_rates[1],
padding=encoder_downsample_rates[1]//2,
),
torch.nn.LeakyReLU(0.1),
torch.nn.InstanceNorm1d(encoder_dim, affine=False),
)
decoder_enc_dim = encoder_dim
self.pitch_convs = torch.nn.Sequential(
torch.nn.Conv1d(2, encoder_dim, kernel_size=1, bias=False),
torch.nn.LeakyReLU(0.1),
torch.nn.InstanceNorm1d(encoder_dim, affine=False),
torch.nn.Conv1d(
encoder_dim, encoder_dim,
kernel_size=2*encoder_downsample_rates[0],
stride=encoder_downsample_rates[0],
padding=encoder_downsample_rates[0]//2,
),
torch.nn.LeakyReLU(0.1),
torch.nn.InstanceNorm1d(encoder_dim, affine=False),
torch.nn.Conv1d(
encoder_dim, encoder_dim,
kernel_size=2*encoder_downsample_rates[1],
stride=encoder_downsample_rates[1],
padding=encoder_downsample_rates[1]//2,
),
torch.nn.LeakyReLU(0.1),
torch.nn.InstanceNorm1d(encoder_dim, affine=False),
)
self.reduce_proj = torch.nn.Linear(encoder_dim + spk_embed_dim, encoder_dim)
# Decoder
self.decoder = Decoder(
enc_dim=decoder_enc_dim,
num_mels=self.num_mels,
frames_per_step=frames_per_step,
attention_rnn_dim=attention_rnn_dim,
decoder_rnn_dim=decoder_rnn_dim,
num_decoder_rnn_layer=num_decoder_rnn_layer,
prenet_dims=prenet_dims,
num_mixtures=num_mixtures,
use_stop_tokens=True,
concat_context_to_last=concat_context_to_last,
encoder_down_factor=self.encoder_down_factor,
)
# Mel-Spec Postnet: some residual CNN layers
self.postnet = Postnet()
def parse_output(self, outputs, output_lengths=None):
if self.mask_padding and output_lengths is not None:
mask = ~get_mask_from_lengths(output_lengths, outputs[0].size(1))
mask = mask.unsqueeze(2).expand(mask.size(0), mask.size(1), self.num_mels)
outputs[0].data.masked_fill_(mask, 0.0)
outputs[1].data.masked_fill_(mask, 0.0)
return outputs
def forward(
self,
bottle_neck_features: torch.Tensor,
feature_lengths: torch.Tensor,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
logf0_uv: torch.Tensor = None,
spembs: torch.Tensor = None,
output_att_ws: bool = False,
):
decoder_inputs = self.bnf_prenet(
bottle_neck_features.transpose(1, 2)
).transpose(1, 2)
logf0_uv = self.pitch_convs(logf0_uv.transpose(1, 2)).transpose(1, 2)
decoder_inputs = decoder_inputs + logf0_uv
assert spembs is not None
spk_embeds = F.normalize(
spembs).unsqueeze(1).expand(-1, decoder_inputs.size(1), -1)
decoder_inputs = torch.cat([decoder_inputs, spk_embeds], dim=-1)
decoder_inputs = self.reduce_proj(decoder_inputs)
# (B, num_mels, T_dec)
T_dec = torch.div(feature_lengths, int(self.encoder_down_factor), rounding_mode='floor')
mel_outputs, predicted_stop, alignments = self.decoder(
decoder_inputs, speech, T_dec)
## Post-processing
mel_outputs_postnet = self.postnet(mel_outputs.transpose(1, 2)).transpose(1, 2)
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
if output_att_ws:
return self.parse_output(
[mel_outputs, mel_outputs_postnet, predicted_stop, alignments], speech_lengths)
else:
return self.parse_output(
[mel_outputs, mel_outputs_postnet, predicted_stop], speech_lengths)
# return mel_outputs, mel_outputs_postnet
def inference(
self,
bottle_neck_features: torch.Tensor,
logf0_uv: torch.Tensor = None,
spembs: torch.Tensor = None,
):
decoder_inputs = self.bnf_prenet(bottle_neck_features.transpose(1, 2)).transpose(1, 2)
logf0_uv = self.pitch_convs(logf0_uv.transpose(1, 2)).transpose(1, 2)
decoder_inputs = decoder_inputs + logf0_uv
assert spembs is not None
spk_embeds = F.normalize(
spembs).unsqueeze(1).expand(-1, decoder_inputs.size(1), -1)
bottle_neck_features = torch.cat([decoder_inputs, spk_embeds], dim=-1)
bottle_neck_features = self.reduce_proj(bottle_neck_features)
## Decoder
if bottle_neck_features.size(0) > 1:
mel_outputs, alignments = self.decoder.inference_batched(bottle_neck_features)
else:
mel_outputs, alignments = self.decoder.inference(bottle_neck_features,)
## Post-processing
mel_outputs_postnet = self.postnet(mel_outputs.transpose(1, 2)).transpose(1, 2)
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
# outputs = mel_outputs_postnet[0]
return mel_outputs[0], mel_outputs_postnet[0], alignments[0]
def load_model(model_file, device=None):
# search a config file
model_config_fpaths = list(model_file.parent.rglob("*.yaml"))
if len(model_config_fpaths) == 0:
raise "No model yaml config found for convertor"
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_config = HpsYaml(model_config_fpaths[0])
ppg2mel_model = MelDecoderMOLv2(
**model_config["model"]
).to(device)
ckpt = torch.load(model_file, map_location=device)
ppg2mel_model.load_state_dict(ckpt["model"])
ppg2mel_model.eval()
return ppg2mel_model
|