File size: 2,705 Bytes
8ef7e05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""Functions for counting the number of tokens in a message or string."""
from __future__ import annotations

import tiktoken

from autogpt.logs import logger


def count_message_tokens(
    messages: list[dict[str, str]], model: str = "gpt-3.5-turbo-0301"
) -> int:
    """
    Returns the number of tokens used by a list of messages.

    Args:
        messages (list): A list of messages, each of which is a dictionary
            containing the role and content of the message.
        model (str): The name of the model to use for tokenization.
            Defaults to "gpt-3.5-turbo-0301".

    Returns:
        int: The number of tokens used by the list of messages.
    """
    try:
        encoding = tiktoken.encoding_for_model(model)
    except KeyError:
        logger.warn("Warning: model not found. Using cl100k_base encoding.")
        encoding = tiktoken.get_encoding("cl100k_base")
    if model == "gpt-3.5-turbo":
        # !Note: gpt-3.5-turbo may change over time.
        # Returning num tokens assuming gpt-3.5-turbo-0301.")
        return count_message_tokens(messages, model="gpt-3.5-turbo-0301")
    elif model == "gpt-4":
        # !Note: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.")
        return count_message_tokens(messages, model="gpt-4-0314")
    elif model == "gpt-3.5-turbo-0301":
        tokens_per_message = (
            4  # every message follows <|start|>{role/name}\n{content}<|end|>\n
        )
        tokens_per_name = -1  # if there's a name, the role is omitted
    elif model == "gpt-4-0314":
        tokens_per_message = 3
        tokens_per_name = 1
    else:
        raise NotImplementedError(
            f"num_tokens_from_messages() is not implemented for model {model}.\n"
            " See https://github.com/openai/openai-python/blob/main/chatml.md for"
            " information on how messages are converted to tokens."
        )
    num_tokens = 0
    for message in messages:
        num_tokens += tokens_per_message
        for key, value in message.items():
            num_tokens += len(encoding.encode(value))
            if key == "name":
                num_tokens += tokens_per_name
    num_tokens += 3  # every reply is primed with <|start|>assistant<|message|>
    return num_tokens


def count_string_tokens(string: str, model_name: str) -> int:
    """
    Returns the number of tokens in a text string.

    Args:
        string (str): The text string.
        model_name (str): The name of the encoding to use. (e.g., "gpt-3.5-turbo")

    Returns:
        int: The number of tokens in the text string.
    """
    encoding = tiktoken.encoding_for_model(model_name)
    return len(encoding.encode(string))