Spaces:
Runtime error
Runtime error
File size: 13,074 Bytes
f6cfc6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pickle
import base64
from plotly import graph_objs as go
from streamlit_option_menu import option_menu
#st.set_page_config(layout='centered')
st.set_option('deprecation.showPyplotGlobalUse', False)
@st.cache_data
def load_data (dataset):
df= pd.read_csv(dataset)
return df
def filedownload(df):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions
href = f'<a href="data:file/csv;base64,{b64}" download="diabete_predictions.csv">Download CSV File</a>'
return href
st.set_page_config(
page_title="Insurance Predicting Application",
)
def user_input_feature():
age= st.slider("Age", 1, 65,step=1)
sex= st.selectbox("Quel est votre sexe? ", ["Masculin", "Feminin"])
sex=0
if sex== "Masculin":
sex=0
else:
sex=1
bmi = st.slider("Select your BMI:e", 0.0, max_value=250.0,step=0.1)
children = st.slider("Combien d'enfant avez-vous? ", 0, step=1)
smoker= st.selectbox("Fumez-vous? ",["Oui", "Non"])
smoker=1 #on pars sur la base qu'il ne fume pas
if smoker=="Oui":
smoker=0
else:
smoker=1
region = 1
region= st.selectbox("Quelle est votre région d'origine? ",['southwest','southeast','northwest','northeast'])
if region=="northeast":
region= 0
elif region=="northwest":
region=1
elif region=="southwest":
region=2
elif region=="southeast":
region=3
data = {
'age':age,
'sex':sex,
'bmi':bmi,
'children':children ,
"smoker": smoker,
"region":region
}
features= pd.DataFrame(data, index=[0])
return features
st.sidebar.image('image2.jpg', width=300)
#class MultiApp:
#def __init__(self):
#self.apps = []
#def add_app(self, title, func):
#self.apps.append({
#"title": title,
#"function": func
#})
def main():
with st.sidebar:
st.write('')
choice = option_menu(
menu_title='Menu bar ',
options=['Home','Analysis','Data virtualisation','Machine Learning','Contact Us'],
icons=['house-fill','person-circle','trophy-fill','chat-fill','info-circle-fill'],
#menu_icon='chat-text-fill',
default_index=0,
styles={
"container": {"padding": "5!important","background-color":'#333333'},
"icon": {"color": "white", "font-size": "15px"},
"nav-link": {"color":"white","font-size": "15px", "text-align": "left", "margin":"0px", },
#"--hover-color": "blue"},
"nav-link-selected": {"background-color": "#005580"},}
)
#menu = ['Home', 'Analysis', 'Data virtualisation','Machine Learning']
#choice = st.sidebar.selectbox('Select Menu', menu)
if choice =='Home':
st.markdown(
"""
<style>
.centered {
display: flex;
justify-content: center;
align-items: center;
height: 15vh;
flex-direction: column;
}
</style>
""",
unsafe_allow_html=True
)
st.markdown(
"""
<div class="centered">
<h1 style="color:#005580;">Welcome to Our Insurance Enterprise!</h1>
<p style="font-size:18px; color:#808080;">Providing reliable protection for your future.</p>
</div>
""",
unsafe_allow_html=True
)
st.markdown(
"""
<style>
.centered {
display: flex;
justify-content: center;
align-items: center;
height: 25vh;
flex-direction: column;
}
</style>
""",
unsafe_allow_html=True
)
st.markdown(
"""
<div class="centered">
<p style="text-align:justify;">Safeguarding Your Tomorrow, Today. Here, we are dedicated to protecting your future by offering comprehensive insurance solutions tailored to your individual needs. With a focus on trust, reliability, and personalized service, we strive to be your trusted partner in navigating the complexities of insurance. From safeguarding your home and vehicles to ensuring your health and financial security, we are here to support you every step of the way.</p>
</div>
""",
unsafe_allow_html=True
)
st.markdown(
"""
<div class="centered">
<h1 style="color:#D0AFAE;">Company Overview</h1>
<p style="font-size:18px; color:#808080;">At our insurance enterprise, let's provide you with a concise overview of our company.</p>
</div>
""",
unsafe_allow_html=True
)
st.markdown("<h4 color: white;'>Types of Insurance Offered.</h4>",unsafe_allow_html=True)
# Liste des types d'assurances
insurance_types = [
" Car Insurance",
"Home Insurance",
"Health Insurance",
"Life Insurance",
"Travel Insurance",
"Liability Insurance",
"Business Insurance",
"Pet Insurance",
"Legal Protection Insurance",
# Ajoutez d'autres types d'assurances selon les besoins de votre entreprise
]
# Affichage des types d'assurances avec mise en forme CSS
st.markdown(
"""
<style>
.insurance-type {
background-color: black;
padding: 10px;
margin-bottom: 10px;
border-radius: 5px;
box-shadow: 0px 2px 5px rgba(0, 0, 0, 0.1);
}
</style>
""",
unsafe_allow_html=True
)
# Affichage de chaque type d'assurance avec la mise en forme CSS
for insurance_type in insurance_types:
st.markdown(f'<div class="insurance-type">{insurance_type}</div>', unsafe_allow_html=True)
if choice =='Analysis':
st.markdown("<h1 style='text-align:center;color:#005580;'>Data Analysis</h1>",unsafe_allow_html=True)
#st.header('Insurances Dataset')
st.write("")
st.write("")
st.write("")
data= load_data("insurance.csv")
if st.checkbox('Dataset preview'):
st.write(data.head(15))
elif st.checkbox('Summary'):
st.write(data.describe())
elif st.checkbox("Missing values"):
st.write(data.isna().sum())
elif st.checkbox("Data types"):
st.write(data.dtypes)
elif st.checkbox("Duplicated lignes"):
st.write(data.duplicated())
elif st.checkbox("Dataset Shape"):
st.write(data.shape)
elif choice =='Data virtualisation':
st.markdown("<h1 style='text-align:center;color:#005580;'>Data virtualisation </h1>",unsafe_allow_html=True)
data= load_data("insurance.csv")
st.write('Do you want to visualize some plots?')
option = st.selectbox("Options", ["Yes", "No"])
if option == "Yes":
st.markdown("<h4 style='text-align:left;color:white;'>Data presentation </h4>",unsafe_allow_html=True)
st.write(data)
graph = st.selectbox('What kind of plot do you want?',['Non Interactive','Interactive'])
if graph == 'Non Interactive':
fig = plt.figure(figsize=(10,5))
sns.countplot(x='age',data=data)
st.pyplot(fig)
fig = plt.figure(figsize=(10,5))
sns.histplot(x='age',data=data)
st.pyplot(fig)
fig = plt.figure(figsize=(10,5))
sns.lineplot(x='age',y="bmi",data=data)
st.pyplot(fig)
plt.figure(figsize = (10,5))
plt.scatter(data.charges,data.age)
plt.xlabel('charges')
plt.ylabel('age')
st.pyplot()
if graph == 'Interactive':
layout = go.Layout(xaxis = dict(range=[0,6000]),
yaxis = dict(range=[0,60]))
fig = go.Figure(data=go.Scatter(x=data.charges,y=data.age,
mode='markers'),layout=layout)
st.plotly_chart(fig)
layout = go.Layout(
xaxis=dict(range=[0, 100]) )
fig = go.Figure(data=go.Histogram(x=data['age']),layout=layout)
st.plotly_chart(fig)
layout = go.Layout(xaxis=dict(range=[0, 6000]), yaxis=dict(range=[0, 60]))
fig = go.Figure(data=go.Line(x=data['age'], y=data['bmi']), layout=layout)
st.plotly_chart(fig)
layout = go.Layout(xaxis=dict(range=[0, 6000]), yaxis=dict(range=[0, 60]))
fig = go.Figure(data=go.Surface (x=data['age'], y=data['bmi']), layout=layout)
st.plotly_chart(fig)
else:
st.write("You selected: No, so you can't visualize")
elif choice =='Machine Learning':
tab1, tab2 =st.tabs([":clipboard: Simulation of your informations",":clipboard: Prediction of the dataset" ])
with tab1:
st.subheader("Simulation of your informations")
st.write("User parameters")
data=user_input_feature()
model = pickle.load(open('assurance.pkl', 'rb'))
prediction = model.predict(data)
string="Le montant de vos frais d'assurance est de "+ str(np.round(prediction[0],2))+"£"
st.success(string)
with tab2:
data= load_data("test.csv")
model = pickle.load(open('assurance.pkl', 'rb'))
prediction = model.predict(data)
st.subheader('Prediction of the CSV')
pp = pd.DataFrame({"Prediction":prediction})
ndf = pd.concat([data,pp],axis=1)
st.write(ndf)
st.write("Do you want to download the csv predicted ? ")
option = st.selectbox("Options", ["No", "Yes"])
button=""
if option== "No":
st.write("You selected No!!!")
else:
button = st.button("Download")
if button:
st.markdown(filedownload(ndf), unsafe_allow_html=True)
elif choice =='Contact Us':
st.markdown("<h1 style='text-align:center;color:#005580;'>Our contact</h1>",unsafe_allow_html=True)
st.write('If you have any questions or concerns about our products or services, we are here to help. Please feel free to contact us using any of the following methods:')
st.markdown("<h5 style='text-align:center;color:white;'>Customer Service</h5>",unsafe_allow_html=True)
st.write('You can also reach our customer service team Monday through Friday, from 9:00 AM to 5:00 PM:')
st.markdown('📞 Phone:+237 694 89 99 77')
st.markdown('📧 Contact via mail: [tiyaesly@gmail.com]')
st.markdown("<h5 style='text-align:center;color:white;'>Branches</h5>",unsafe_allow_html=True)
st.write('If you prefer to speak in person, you can visit one of our branches located throughout the country. Find the nearest branch to you:')
st.markdown('🌐 Titi Garage')
st.markdown('🌐 Bastos')
st.markdown("🌐 Essos")
if __name__ == "__main__":
main()
|