File size: 5,738 Bytes
3a6f1f2
 
3faa99b
3a6f1f2
 
87c57a3
 
 
 
 
 
 
 
5f57808
3a6f1f2
 
 
 
87c57a3
3a6f1f2
 
5f57808
3faa99b
3a6f1f2
87c57a3
 
3a6f1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
87c57a3
 
 
3a6f1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87c57a3
 
 
 
 
 
 
 
 
 
 
 
 
3faa99b
 
 
 
 
 
 
 
5f57808
 
 
 
 
 
 
 
 
3a6f1f2
 
 
 
 
 
 
 
87c57a3
3faa99b
 
 
3a6f1f2
 
 
 
 
 
 
 
 
 
 
 
 
5f57808
 
 
3a6f1f2
3faa99b
3a6f1f2
3faa99b
3a6f1f2
 
 
87c57a3
 
 
3a6f1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3faa99b
 
 
3a6f1f2
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import io
from enum import Enum
from typing import Any, List, Optional, Tuple, Union

import numpy as np
from cv2 import (
    BORDER_DEFAULT,
    MORPH_ELLIPSE,
    MORPH_OPEN,
    GaussianBlur,
    getStructuringElement,
    morphologyEx,
)
from PIL import Image, ImageOps
from PIL.Image import Image as PILImage
from pymatting.alpha.estimate_alpha_cf import estimate_alpha_cf
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from pymatting.util.util import stack_images
from scipy.ndimage import binary_erosion

from .session_factory import new_session
from .sessions import sessions_class
from .sessions.base import BaseSession

kernel = getStructuringElement(MORPH_ELLIPSE, (3, 3))


class ReturnType(Enum):
    BYTES = 0
    PILLOW = 1
    NDARRAY = 2


def alpha_matting_cutout(
    img: PILImage,
    mask: PILImage,
    foreground_threshold: int,
    background_threshold: int,
    erode_structure_size: int,
) -> PILImage:
    if img.mode == "RGBA" or img.mode == "CMYK":
        img = img.convert("RGB")

    img = np.asarray(img)
    mask = np.asarray(mask)

    is_foreground = mask > foreground_threshold
    is_background = mask < background_threshold

    structure = None
    if erode_structure_size > 0:
        structure = np.ones(
            (erode_structure_size, erode_structure_size), dtype=np.uint8
        )

    is_foreground = binary_erosion(is_foreground, structure=structure)
    is_background = binary_erosion(is_background, structure=structure, border_value=1)

    trimap = np.full(mask.shape, dtype=np.uint8, fill_value=128)
    trimap[is_foreground] = 255
    trimap[is_background] = 0

    img_normalized = img / 255.0
    trimap_normalized = trimap / 255.0

    alpha = estimate_alpha_cf(img_normalized, trimap_normalized)
    foreground = estimate_foreground_ml(img_normalized, alpha)
    cutout = stack_images(foreground, alpha)

    cutout = np.clip(cutout * 255, 0, 255).astype(np.uint8)
    cutout = Image.fromarray(cutout)

    return cutout


def naive_cutout(img: PILImage, mask: PILImage) -> PILImage:
    empty = Image.new("RGBA", (img.size), 0)
    cutout = Image.composite(img, empty, mask)
    return cutout


def get_concat_v_multi(imgs: List[PILImage]) -> PILImage:
    pivot = imgs.pop(0)
    for im in imgs:
        pivot = get_concat_v(pivot, im)
    return pivot


def get_concat_v(img1: PILImage, img2: PILImage) -> PILImage:
    dst = Image.new("RGBA", (img1.width, img1.height + img2.height))
    dst.paste(img1, (0, 0))
    dst.paste(img2, (0, img1.height))
    return dst


def post_process(mask: np.ndarray) -> np.ndarray:
    """
    Post Process the mask for a smooth boundary by applying Morphological Operations
    Research based on paper: https://www.sciencedirect.com/science/article/pii/S2352914821000757
    args:
        mask: Binary Numpy Mask
    """
    mask = morphologyEx(mask, MORPH_OPEN, kernel)
    mask = GaussianBlur(mask, (5, 5), sigmaX=2, sigmaY=2, borderType=BORDER_DEFAULT)
    mask = np.where(mask < 127, 0, 255).astype(np.uint8)  # convert again to binary
    return mask


def apply_background_color(img: PILImage, color: Tuple[int, int, int, int]) -> PILImage:
    r, g, b, a = color
    colored_image = Image.new("RGBA", img.size, (r, g, b, a))
    colored_image.paste(img, mask=img)

    return colored_image


def fix_image_orientation(img: PILImage) -> PILImage:
    return ImageOps.exif_transpose(img)


def download_models() -> None:
    for session in sessions_class:
        session.download_models()


def remove(
    data: Union[bytes, PILImage, np.ndarray],
    alpha_matting: bool = False,
    alpha_matting_foreground_threshold: int = 240,
    alpha_matting_background_threshold: int = 10,
    alpha_matting_erode_size: int = 10,
    session: Optional[BaseSession] = None,
    only_mask: bool = False,
    post_process_mask: bool = False,
    bgcolor: Optional[Tuple[int, int, int, int]] = None,
    *args: Optional[Any],
    **kwargs: Optional[Any]
) -> Union[bytes, PILImage, np.ndarray]:
    if isinstance(data, PILImage):
        return_type = ReturnType.PILLOW
        img = data
    elif isinstance(data, bytes):
        return_type = ReturnType.BYTES
        img = Image.open(io.BytesIO(data))
    elif isinstance(data, np.ndarray):
        return_type = ReturnType.NDARRAY
        img = Image.fromarray(data)
    else:
        raise ValueError("Input type {} is not supported.".format(type(data)))

    # Fix image orientation
    img = fix_image_orientation(img)

    if session is None:
        session = new_session("u2net", *args, **kwargs)

    masks = session.predict(img, *args, **kwargs)
    cutouts = []

    for mask in masks:
        if post_process_mask:
            mask = Image.fromarray(post_process(np.array(mask)))

        if only_mask:
            cutout = mask

        elif alpha_matting:
            try:
                cutout = alpha_matting_cutout(
                    img,
                    mask,
                    alpha_matting_foreground_threshold,
                    alpha_matting_background_threshold,
                    alpha_matting_erode_size,
                )
            except ValueError:
                cutout = naive_cutout(img, mask)

        else:
            cutout = naive_cutout(img, mask)

        cutouts.append(cutout)

    cutout = img
    if len(cutouts) > 0:
        cutout = get_concat_v_multi(cutouts)

    if bgcolor is not None and not only_mask:
        cutout = apply_background_color(cutout, bgcolor)

    if ReturnType.PILLOW == return_type:
        return cutout

    if ReturnType.NDARRAY == return_type:
        return np.asarray(cutout)

    bio = io.BytesIO()
    cutout.save(bio, "PNG")
    bio.seek(0)

    return bio.read()