File size: 5,805 Bytes
c9595c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from flask import Flask, request, render_template, jsonify, send_from_directory
import os
import torch
import numpy as np
import cv2
from segment_anything import sam_model_registry, SamPredictor
from werkzeug.utils import secure_filename
import warnings

# Initialisation de Flask
app = Flask(
    __name__,
    template_folder='templates',  # Chemin des fichiers HTML
    static_folder='static'       # Chemin des fichiers statiques
)
app.config['UPLOAD_FOLDER'] = os.path.join('static', 'uploads')
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)

# Charger le modèle SAM
MODEL_TYPE = "vit_b"
MODEL_PATH = os.path.join('models', 'sam_vit_b_01ec64.pth')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print("Chargement du modèle SAM...")
try:
    state_dict = torch.load(MODEL_PATH, map_location="cpu", weights_only=True)
except TypeError:
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", category=UserWarning)
        state_dict = torch.load(MODEL_PATH, map_location="cpu")

# Initialiser et charger le modèle
sam = sam_model_registry[MODEL_TYPE]()
sam.load_state_dict(state_dict, strict=False)
sam.to(device=device)
predictor = SamPredictor(sam)
print("Modèle SAM chargé avec succès!")

# Fonction pour générer une couleur unique pour chaque classe
def get_color_for_class(class_name):
    np.random.seed(hash(class_name) % (2**32))
    return tuple(np.random.randint(0, 256, size=3).tolist())

# Convertir un masque en bounding box au format YOLOv5
def mask_to_yolo_bbox(mask):
    y_indices, x_indices = np.where(mask > 0)
    if len(x_indices) == 0 or len(y_indices) == 0:
        return None
    x_min, x_max = x_indices.min(), x_indices.max()
    y_min, y_max = y_indices.min(), y_indices.max()

    # YOLOv5 format: x_center, y_center, width, height (normalized)
    x_center = (x_min + x_max) / 2
    y_center = (y_min + y_max) / 2
    width = x_max - x_min
    height = y_max - y_min

    return x_center, y_center, width, height

@app.route('/', methods=['GET', 'POST'])
def index():
    if request.method == 'POST':
        file = request.files.get('image')
        if not file or not file.filename:
            return "Aucun fichier sélectionné", 400
        filename = secure_filename(file.filename)
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(filepath)
        return render_template('index.html', uploaded_image=filename)
    return render_template('index.html')

@app.route('/uploads/<filename>')
def uploaded_file(filename):
    return send_from_directory(app.config['UPLOAD_FOLDER'], filename)

@app.route('/segment', methods=['POST'])
def segment():
    data = request.get_json()
    image_name = data.get('image_name')
    points = data.get('points')

    if not image_name or not points:
        return jsonify({'success': False, 'error': 'Données manquantes'}), 400

    image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_name)
    if not os.path.exists(image_path):
        return jsonify({'success': False, 'error': 'Image non trouvée'}), 404

    # Créer un dossier pour sauvegarder les résultats
    output_dir = os.path.join(app.config['UPLOAD_FOLDER'], os.path.splitext(image_name)[0])
    os.makedirs(output_dir, exist_ok=True)

    # Charger l'image et effectuer la segmentation
    image = cv2.imread(image_path)
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    predictor.set_image(image_rgb)
    annotated_image = image.copy()

    # YOLOv5 annotation
    yolo_annotations = []

    for point in points:
        x, y = point['x'], point['y']
        class_name = point.get('class', 'Unknown')
        class_id = hash(class_name) % 1000  # Générer un ID unique basé sur le nom
        color = get_color_for_class(class_name)  # Couleur unique pour chaque classe
        masks, _, _ = predictor.predict(
            point_coords=np.array([[x, y]]),
            point_labels=np.array([1]),
            multimask_output=False
        )
        mask = masks[0]
        annotated_image[mask > 0] = color  # Superposer le masque avec la couleur

        # Convertir le masque en bounding box YOLOv5
        bbox = mask_to_yolo_bbox(mask)
        if bbox:
            x_center, y_center, width, height = bbox
            # Normaliser les valeurs
            x_center /= image.shape[1]
            y_center /= image.shape[0]
            width /= image.shape[1]
            height /= image.shape[0]
            yolo_annotations.append(f"{class_id} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}")

        # Ajouter le texte de la classe
        cv2.putText(annotated_image, class_name, (int(x), int(y)),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)  # Texte blanc

    # Sauvegarder les résultats
        annotated_filename = f"annotated_{image_name}"
        annotated_path = os.path.join(output_dir, annotated_filename)
        cv2.imwrite(annotated_path, annotated_image)

        # Sauvegarder les annotations YOLOv5
        yolo_path = os.path.join(output_dir, f"{os.path.splitext(image_name)[0]}.txt")
        with open(yolo_path, "w") as f:
            f.write("\n".join(yolo_annotations))

        # Copier l'image originale dans le dossier
        original_copy_path = os.path.join(output_dir, image_name)
        if not os.path.exists(original_copy_path):
            os.rename(image_path, original_copy_path)

        # Renvoyer le chemin relatif pour affichage
        relative_output_dir = output_dir.replace("static/", "")
        return jsonify({
            'success': True,
            'output_dir': relative_output_dir,
            'annotated_image': f"{relative_output_dir}/{annotated_filename}"
        })

if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0', port=5000)