File size: 1,071 Bytes
32e29ce
10bd232
 
32e29ce
228d591
 
 
 
ac9823f
32e29ce
 
162eb52
228d591
32e29ce
228d591
de28523
32e29ce
 
10bd232
32e29ce
 
 
228d591
 
 
 
 
 
 
 
 
 
10bd232
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import streamlit as st
from diffusers import DiffusionPipeline
import torch
from PIL import Image
from huggingface_hub import login

# Optional: Log in to Hugging Face (if using private models)
# login(token="your_huggingface_token")

# Streamlit app title
st.title("Stable Diffusion Image Generator")

# Load the diffusion pipeline (make sure you have access to the model)
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float32)
pipe.to("cpu")  # Ensure it's using CPU

# Get user input (prompt)
prompt = st.text_input("What do you want to see?", "A beautiful landscape")

# Button to generate image
if st.button('Generate Image'):
    with st.spinner('Generating...'):
        try:
            # Generate image
            image = pipe(prompt).images[0]

            # Display image in Streamlit
            st.image(image, caption="Generated Image", use_column_width=True)

            st.success("Image generated successfully!")
        except Exception as e:
            st.error(f"An error occurred: {str(e)}")