File size: 15,330 Bytes
4350164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
"""Create an Object Detection Web App using PyTorch and Streamlit."""
# import libraries
from PIL import Image
from torchvision import models, transforms
import torch
import streamlit as st
from yolo import YOLO
import os
import urllib
import numpy as np
from streamlit_webrtc import webrtc_streamer, WebRtcMode, RTCConfiguration
import av
# 设置网页的icon
st.set_page_config(page_title='Gesture Detector', page_icon='✌',
                   layout='centered', initial_sidebar_state='expanded')

RTC_CONFIGURATION = RTCConfiguration(
    {
      "RTCIceServer": [{
        "urls": ["stun:stun.l.google.com:19302"],
        "username": "pikachu",
        "credential": "1234",
      }]
    }
)
def main():
    # Render the readme as markdown using st.markdown.
    readme_text = st.markdown(open("instructions.md",encoding='utf-8').read())

    
    # Once we have the dependencies, add a selector for the app mode on the sidebar.
    st.sidebar.title("What to do")
    app_mode = st.sidebar.selectbox("Choose the app mode",
        ["Show instructions", "Run the app", "Show the source code"])
    if app_mode == "Show instructions":
        st.sidebar.success('To continue select "Run the app".')
    elif app_mode == "Show the source code":
        readme_text.empty()
        st.code(open("app.py",encoding='utf-8').read())
    elif app_mode == "Run the app":
        # Download external dependencies.
        for filename in EXTERNAL_DEPENDENCIES.keys():
            download_file(filename)

        readme_text.empty()
        run_the_app()

# External files to download.
EXTERNAL_DEPENDENCIES = {
    "yolov4_tiny.pth": {
        "url": "https://github.com/Dreaming-future/my_weights/releases/download/v1.3/yolov4_tiny.pth",
        "size": 23631189 
    },
    "yolov4_SE.pth": {
        "url": "https://github.com/Dreaming-future/my_weights/releases/download/v1.3/yolov4_SE.pth",
        "size": 23806027
    },
    "yolov4_CBAM.pth":{
        "url": "https://github.com/Dreaming-future/my_weights/releases/download/v1.3/yolov4_CBAM.pth",
        "size": 23981478
    },
    "yolov4_ECA.pth":{
        "url": "https://github.com/Dreaming-future/my_weights/releases/download/v1.3/yolov4_ECA.pth",
        "size": 23632688
    },
    "yolov4_weights_ep150_608.pth":{
        "url": "https://github.com/Dreaming-future/my_weights/releases/download/v1.3/yolov4_weights_ep150_608.pth",
        "size": 256423031
    },
    "yolov4_weights_ep150_416.pth":{
        "url": "https://github.com/Dreaming-future/my_weights/releases/download/v1.3/yolov4_weights_ep150_416.pth",
        "size": 256423031
    },
}


# This file downloader demonstrates Streamlit animation.
def download_file(file_path):
    # Don't download the file twice. (If possible, verify the download using the file length.)
    if os.path.exists(file_path):
        if "size" not in EXTERNAL_DEPENDENCIES[file_path]:
            return
        elif os.path.getsize(file_path) == EXTERNAL_DEPENDENCIES[file_path]["size"]:
            return
    # print(os.path.getsize(file_path))
    # These are handles to two visual elements to animate.
    weights_warning, progress_bar = None, None
    try:
        weights_warning = st.warning("Downloading %s..." % file_path)
        progress_bar = st.progress(0)
        with open(file_path, "wb") as output_file:
            with urllib.request.urlopen(EXTERNAL_DEPENDENCIES[file_path]["url"]) as response:
                length = int(response.info()["Content-Length"])
                counter = 0.0
                MEGABYTES = 2.0 ** 20.0
                while True:
                    data = response.read(8192)
                    if not data:
                        break
                    counter += len(data)
                    output_file.write(data)

                    # We perform animation by overwriting the elements.
                    weights_warning.warning("Downloading %s... (%6.2f/%6.2f MB)" %
                        (file_path, counter / MEGABYTES, length / MEGABYTES))
                    progress_bar.progress(min(counter / length, 1.0))
    except Exception as e:
        print(e)
    # Finally, we remove these visual elements by calling .empty().
    finally:
        if weights_warning is not None:
            weights_warning.empty()
        if progress_bar is not None:
            progress_bar.empty()

# This is the main app app itself, which appears when the user selects "Run the app".
def run_the_app():    
    class Config():
        def __init__(self, weights = 'yolov4_tiny.pth', tiny = True, phi = 0, shape = 416,nms_iou = 0.3, confidence = 0.5):
            self.weights = weights
            self.tiny = tiny
            self.phi = phi
            self.cuda = False
            self.shape = shape
            self.confidence = confidence
            self.nms_iou = nms_iou
    # set title of app
    st.markdown('<h1 align="center">✌ Gesture Detection</h1>',
                unsafe_allow_html=True)
    st.sidebar.markdown("# Gesture Detection on?")
    activities = ["Example","Image", "Camera", "FPS", "Heatmap","Real Time", "Video"]
    choice = st.sidebar.selectbox("Choose among the given options:", activities)
    phi = st.sidebar.selectbox("yolov4-tiny 使用的自注意力模式:",('0tiny','1SE','2CABM','3ECA'))
    print("")

    tiny = st.sidebar.checkbox('是否使用 yolov4 tiny 模型')
    if not tiny:
        shape = st.sidebar.selectbox("Choose shape to Input:", [416,608])
    conf,nms = object_detector_ui()
    @st.cache
    def get_yolo(tiny,phi,conf,nms,shape=416):
        weights = 'yolov4_tiny.pth'
        if tiny:
            if phi == '0tiny':
                weights = 'yolov4_tiny.pth'
            elif phi == '1SE':
                weights = 'yolov4_SE.pth'
            elif phi == '2CABM':
                weights = 'yolov4_CBAM.pth'
            elif phi == '3ECA':
                weights = 'yolov4_ECA.pth'
        else:
            if shape == 608:
                weights = 'yolov4_weights_ep150_608.pth'
            elif shape == 416:
                weights = 'yolov4_weights_ep150_416.pth'
        opt = Config(weights = weights, tiny = tiny , phi = int(phi[0]), shape = shape,nms_iou = nms, confidence = conf)
        yolo = YOLO(opt)
        return yolo
    
    if tiny:
        yolo = get_yolo(tiny, phi, conf, nms)
        st.write("YOLOV4 tiny 模型加载完毕")
    else:
        yolo = get_yolo(tiny, phi, conf, nms, shape)
        st.write("YOLOV4 模型加载完毕")
    
    if choice == 'Image':
        detect_image(yolo)
    elif choice =='Camera':
        detect_camera(yolo)
    elif choice == 'FPS':
        detect_fps(yolo)
    elif choice == "Heatmap":
        detect_heatmap(yolo)
    elif choice == "Example":
        detect_example(yolo)
    elif choice == "Real Time":
        detect_realtime(yolo)
    elif choice == "Video":
        detect_video(yolo)
        


# This sidebar UI lets the user select parameters for the YOLO object detector.
def object_detector_ui():
    st.sidebar.markdown("# Model")
    confidence_threshold = st.sidebar.slider("Confidence threshold", 0.0, 1.0, 0.5, 0.01)
    overlap_threshold = st.sidebar.slider("Overlap threshold", 0.0, 1.0, 0.3, 0.01)
    return confidence_threshold, overlap_threshold

def predict(image,yolo):
    """Return predictions.

    Parameters
    ----------
    :param image: uploaded image
    :type image: jpg
    :rtype: list
    :return: none
    """
    crop            = False
    count           = False
    try:
        # image = Image.open(image)
        r_image = yolo.detect_image(image, crop = crop, count=count)
        transform = transforms.Compose([transforms.ToTensor()])        
        result = transform(r_image)
        st.image(result.permute(1,2,0).numpy(), caption = 'Processed Image.', use_column_width = True)
    except Exception as e:
        print(e)

def fps(image,yolo):
    test_interval = 50
    tact_time = yolo.get_FPS(image, test_interval)
    st.write(str(tact_time) + ' seconds, ', str(1/tact_time),'FPS, @batch_size 1')
    return tact_time
    # print(str(tact_time) + ' seconds, ' + str(1/tact_time) + 'FPS, @batch_size 1')


def detect_image(yolo):
    # enable users to upload images for the model to make predictions
    file_up = st.file_uploader("Upload an image", type = ["jpg","png","jpeg"])
    classes = ["up","down","left","right","front","back","clockwise","anticlockwise"]
    class_to_idx = {cls: idx for (idx, cls) in enumerate(classes)}
    st.sidebar.markdown("See the model preformance and play with it")
    if file_up is not None:
        with st.spinner(text='Preparing Image'):
            # display image that user uploaded
            image = Image.open(file_up)
            st.image(image, caption = 'Uploaded Image.', use_column_width = True)
            st.balloons()
            detect = st.button("开始检测Image")
            if detect:
                st.write("")
                st.write("Just a second ...")
                predict(image,yolo)
                st.balloons()



def detect_camera(yolo):
    picture = st.camera_input("Take a picture")
    if picture:
        filters_to_funcs = {
            "No filter": predict,
            "Heatmap": heatmap,
            "FPS": fps,
        }
        filters = st.selectbox("...and now, apply a filter!", filters_to_funcs.keys())
        image = Image.open(picture)
        with st.spinner(text='Preparing Image'):
            filters_to_funcs[filters](image,yolo)
            st.balloons()

def detect_fps(yolo):
    file_up = st.file_uploader("Upload an image", type = ["jpg","png","jpeg"])
    classes = ["up","down","left","right","front","back","clockwise","anticlockwise"]
    class_to_idx = {cls: idx for (idx, cls) in enumerate(classes)}
    st.sidebar.markdown("See the model preformance and play with it")
    if file_up is not None:
        # display image that user uploaded
        image = Image.open(file_up)
        st.image(image, caption = 'Uploaded Image.', use_column_width = True)
        st.balloons()
        detect = st.button("开始检测 FPS")
        if detect:
            with st.spinner(text='Preparing Image'):
                st.write("")
                st.write("Just a second ...")
                tact_time = fps(image,yolo)
                # st.write(str(tact_time) + ' seconds, ', str(1/tact_time),'FPS, @batch_size 1')
                st.balloons()

def heatmap(image,yolo):
    heatmap_save_path = "heatmap_vision.png"
    yolo.detect_heatmap(image, heatmap_save_path)
    img = Image.open(heatmap_save_path)
    transform = transforms.Compose([transforms.ToTensor()])        
    result = transform(img)
    st.image(result.permute(1,2,0).numpy(), caption = 'Processed Image.', use_column_width = True)

def detect_heatmap(yolo):
    file_up = st.file_uploader("Upload an image", type = ["jpg","png","jpeg"])
    classes = ["up","down","left","right","front","back","clockwise","anticlockwise"]
    class_to_idx = {cls: idx for (idx, cls) in enumerate(classes)}
    st.sidebar.markdown("See the model preformance and play with it")
    if file_up is not None:
        # display image that user uploaded
        image = Image.open(file_up)
        st.image(image, caption = 'Uploaded Image.', use_column_width = True)
        st.balloons()
        detect = st.button("开始检测 heatmap")
        if detect:
            with st.spinner(text='Preparing Heatmap'):
                st.write("")
                st.write("Just a second ...")
                heatmap(image,yolo)
                st.balloons()

def detect_example(yolo):
    st.sidebar.title("Choose an Image as a example")
    images = os.listdir('./img')
    images.sort()
    image = st.sidebar.selectbox("Image Name", images)
    st.sidebar.markdown("See the model preformance and play with it")
    image = Image.open(os.path.join('img',image))
    st.image(image, caption = 'Choose Image.', use_column_width = True)
    st.balloons()
    detect = st.button("开始检测Image")
    if detect:
        st.write("")
        st.write("Just a second ...")
        predict(image,yolo)
        st.balloons()

def detect_realtime(yolo):

    class VideoProcessor:
        def recv(self, frame):
            img = frame.to_ndarray(format="bgr24")
            img = Image.fromarray(img)
            crop            = False
            count           = False
            r_image = yolo.detect_image(img, crop = crop, count=count)
            transform = transforms.Compose([transforms.ToTensor()])        
            result = transform(r_image)
            result = result.permute(1,2,0).numpy()
            result = (result * 255).astype(np.uint8)
            return av.VideoFrame.from_ndarray(result, format="bgr24")
       
    webrtc_ctx = webrtc_streamer(
        key="example",
        mode=WebRtcMode.SENDRECV,
        rtc_configuration=RTC_CONFIGURATION,
        media_stream_constraints={"video": True, "audio": False},
        async_processing=False,
        video_processor_factory=VideoProcessor
    )

import cv2
import time
def detect_video(yolo):
    file_up = st.file_uploader("Upload a video", type = ["mp4"])
    print(file_up)
    classes = ["up","down","left","right","front","back","clockwise","anticlockwise"]
    
    if file_up is not None:
        video_path = 'video.mp4'
        st.video(file_up)
        with open(video_path, 'wb') as f:
            f.write(file_up.read())       
        detect = st.button("开始检测 Video")
        
        if detect: 
            video_save_path = 'video2.mp4'
            # display image that user uploaded
            capture = cv2.VideoCapture(video_path)
            
            video_fps = st.slider("Video FPS", 5, 30, int(capture.get(cv2.CAP_PROP_FPS)), 1)
            fourcc  = cv2.VideoWriter_fourcc(*'XVID')
            size    = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
            out     = cv2.VideoWriter(video_save_path, fourcc, video_fps, size)


            
            while(True):
                # 读取某一帧
                ref, frame = capture.read()
                if not ref:
                    break
                # 转变成Image
                # frame = Image.fromarray(np.uint8(frame))
                # 格式转变,BGRtoRGB
                frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
                # 转变成Image
                frame = Image.fromarray(np.uint8(frame))
                # 进行检测
                frame = np.array(yolo.detect_image(frame))
                # RGBtoBGR满足opencv显示格式
                frame = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR)

                # print("fps= %.2f"%(fps))
                # frame = cv2.putText(frame, "fps= %.2f"%(fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
                out.write(frame)
                
            out.release()
            capture.release()
            print("Save processed video to the path :" + video_save_path)
            
            with open(video_save_path, "rb") as file:
                btn = st.download_button(
                        label="Download Video",
                        data=file,
                        file_name="video.mp4",
                    )
            st.balloons()

if __name__ == "__main__":
    main()