Spaces:
Sleeping
Sleeping
File size: 3,207 Bytes
2999286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
#!/usr/bin/env python # coding: utf-8 # # Multi omics analysis by MOFA # MOFA is a factor analysis model that provides a general framework for the integration of multi-omic data sets in an unsupervised fashion. # # This tutorial focuses on how to perform mofa in multi-omics like scRNA-seq and scATAC-seq # # Paper: [MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02015-1) # # Code: https://github.com/bioFAM/mofapy2 # # Colab_Reproducibility:https://colab.research.google.com/drive/1UPGQA3BenrC-eLIGVtdKVftSnOKIwNrP?usp=sharing # ## Part.1 MOFA Model # In this part, we construct a model of mofa by scRNA-seq and scATAC-seq # In[1]: import omicverse as ov rna=ov.utils.read('data/sample/rna_p_n_raw.h5ad') atac=ov.utils.read('data/sample/atac_p_n_raw.h5ad') # In[2]: rna,atac # We only need to add anndata to `ov.single.mofa` to construct the base model # In[4]: test_mofa=ov.single.pyMOFA(omics=[rna,atac], omics_name=['RNA','ATAC']) # In[ ]: test_mofa.mofa_preprocess() test_mofa.mofa_run(outfile='models/brac_rna_atac.hdf5') # ## Part.2 MOFA Analysis # After get the model by mofa, we need to analysis the factor about different omics, we provide some method to do this # ### load data # In[1]: import omicverse as ov ov.utils.ov_plot_set() # In[2]: rna=ov.utils.read('data/sample/rna_test.h5ad') # ### add value of factor to anndata # In[3]: rna=ov.single.factor_exact(rna,hdf5_path='data/sample/MOFA_POS.hdf5') rna # ### analysis of the correlation between factor and cell type # In[4]: ov.single.factor_correlation(adata=rna,cluster='cell_type',factor_list=[1,2,3,4,5]) # ### Get the gene/feature weights of different factor # In[5]: ov.single.get_weights(hdf5_path='data/sample/MOFA_POS.hdf5',view='RNA',factor=1) # ## Part.3 MOFA Visualize # # To visualize the result of mofa, we provide a series of function to do this. # In[6]: pymofa_obj=ov.single.pyMOFAART(model_path='data/sample/MOFA_POS.hdf5') # We get the factor of each cell at first # In[7]: pymofa_obj.get_factors(rna) rna # We can also plot the varience in each View # In[8]: pymofa_obj.plot_r2() # In[9]: pymofa_obj.get_r2() # ### Visualize the correlation between factor and celltype # In[10]: pymofa_obj.plot_cor(rna,'cell_type') # We found that factor6 is correlated to Epithelial # In[11]: pymofa_obj.plot_factor(rna,'cell_type','Epi',figsize=(3,3), factor1=6,factor2=10,) # In[24]: import scanpy as sc sc.pp.neighbors(rna) sc.tl.umap(rna) sc.pl.embedding( rna, basis="X_umap", color=["factor6","cell_type"], frameon=False, ncols=2, #palette=ov.utils.pyomic_palette(), show=False, cmap='Greens', vmin=0, ) #plt.savefig("figures/umap_factor6.png",dpi=300,bbox_inches = 'tight') # In[12]: pymofa_obj.plot_weight_gene_d1(view='RNA',factor1=6,factor2=10,) # In[18]: pymofa_obj.plot_weights(view='RNA',factor=6,color='#5de25d', ascending=True) # In[14]: pymofa_obj.plot_top_feature_heatmap(view='RNA') # In[ ]: |