Spaces:
Runtime error
Runtime error
File size: 3,144 Bytes
d358e26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import glob
import os
from tqdm import tqdm
from dataclasses import dataclass
import torch
from torch import Tensor
from torch.multiprocessing import Pool, set_start_method
import torchaudio
from config import MelConfig, TrainConfig
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
@dataclass
class DataConfig:
audio_dir = './audios' # path to audios
output_dir = './vocos_datasets' # path to save processed audios
filelist_path = './filelists/filelist.txt' # path to save filelist
data_config = DataConfig()
train_config = TrainConfig()
mel_config = MelConfig()
audio_dir = data_config.audio_dir
output_dir = data_config.output_dir
filelist_path = data_config.filelist_path
segment_size = train_config.segment_size
output_audio_dir = os.path.join(output_dir, 'audios')
# Ensure output directories exist
os.makedirs(output_audio_dir, exist_ok=True)
os.makedirs(os.path.dirname(filelist_path), exist_ok=True)
def load_and_resample_audio(audio_path, target_sr, segment_size, device='cpu') -> Tensor:
try:
y, sr = torchaudio.load(audio_path)
except Exception as e:
print(str(e))
return None
y.to(device)
# Convert to mono
if y.size(0) > 1:
y = y[0, :].unsqueeze(0) # shape: [2, time] -> [time] -> [1, time]
# resample audio to target sample_rate
if sr != target_sr:
y = torchaudio.functional.resample(y, sr, target_sr)
if y.size(-1) < segment_size:
y = torch.nn.functional.pad(y, (0, segment_size - y.size(-1)), "constant", 0)
return y
def find_audio_files(directory) -> list:
extensions = ['wav', 'mp3', 'flac']
files_found = []
for extension in extensions:
pattern = os.path.join(directory, '**', f'*.{extension}')
files_found.extend(glob.glob(pattern, recursive=True))
return files_found
@ torch.inference_mode()
def process_audio(audio_path):
audio = load_and_resample_audio(audio_path, mel_config.sample_rate, segment_size, device=device) # shape: [1, time]
if audio is not None:
# get output path
audio_name, _ = os.path.splitext(os.path.basename(audio_path))
output_audio_path = os.path.join(output_audio_dir, audio_name + '.wav')
# save resampled audio and mel features
torchaudio.save(output_audio_path, audio.cpu(), mel_config.sample_rate)
return output_audio_path
def main():
set_start_method('spawn') # CUDA must use spawn method
audio_files = find_audio_files(audio_dir)
results = []
with Pool(processes=8) as pool:
for result in tqdm(pool.imap(process_audio, audio_files), total=len(audio_files)):
if result is not None:
results.append(f'{result}\n')
# save filelist
with open(filelist_path, 'w', encoding='utf-8') as f:
f.writelines(results)
print(f"filelist file has been saved to {filelist_path}")
# faster and use much less CPU
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == '__main__':
main() |