Spaces:
Sleeping
Sleeping
File size: 1,244 Bytes
81762da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
from transformers import pipeline
# Load the sentiment analysis, keyword extraction, and text summarization models from Hugging Face
sentiment_model = pipeline("sentiment-analysis")
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
keyword_extraction_model = pipeline(
"text2text-generation", model="transformer3/keywordextractor"
)
# Define the function to be called when text input is provided
def analyze_text(text):
# Sentiment analysis
sentiment_result = sentiment_model(text)[0]
sentiment = sentiment_result["label"]
sentiment_score = sentiment_result["score"]
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
# Keyword extraction
keyword_result = keyword_extraction_model(
f"summarize: {text}", max_length=50, num_return_sequences=1
)
keywords = keyword_result[0]
# # Text summarization
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
return f"Sentiment: {sentiment}, Score: {sentiment_score}\nKeywords: {keywords}\nSummary: {summary}"
# Create the Gradio interface
iface = gr.Interface(fn=analyze_text, inputs="text", outputs="text")
# Launch the interface
iface.launch()
|