File size: 7,327 Bytes
7ae68fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------

import os
import torch
import torch.distributed as dist
from torch._six import inf


def load_checkpoint(file_name, config, model, model_ema, optimizer, lr_scheduler, loss_scaler, logger):
    if config.model.params.deepspeed != '':
        file_name = file_name.split('/')
        ckptdir = '/'.join(file_name[:-1])
        tag = file_name[-1]
        _, client_states = model.load_checkpoint(ckptdir, tag=tag)
        print(client_states)
        logger.info("Resume checkpoint %s" % file_name)
        checkpoint = torch.load(
            os.path.join(ckptdir, tag, "state.pth"), map_location="cpu"
        )
        msg = model_ema.load_state_dict(checkpoint['model_ema'])
        logger.info(msg)
        start_epoch = checkpoint["epoch"] + 1
        max_accuracy = 0.0
        if loss_scaler and "grad_scale_manager" in checkpoint:
            loss_scaler.load_state_dict(checkpoint["grad_scale_manager"])
        if 'max_accuracy' in checkpoint:
            max_accuracy = checkpoint['max_accuracy']
    else:        
        logger.info(f"==============> Resuming form {file_name}....................")
        checkpoint = torch.load(file_name, map_location='cpu')
        msg = model.load_state_dict(checkpoint['model'], strict=False)
        logger.info(msg)
        max_accuracy = 0.0
        if 'optimizer' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            if 'lr_scheduler' in checkpoint:
                lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            start_epoch = checkpoint['epoch'] + 1
            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])
            logger.info(f"=> loaded successfully '{file_name}' (epoch {checkpoint['epoch']})")
            if 'max_accuracy' in checkpoint:
                max_accuracy = checkpoint['max_accuracy']

        del checkpoint
        torch.cuda.empty_cache()
    return max_accuracy, start_epoch


def save_checkpoint(ckptdir, config, epoch, model, model_ema, max_accuracy, optimizer, lr_scheduler, loss_scaler, logger):

    if config.model.params.deepspeed != '':
        if dist.get_rank() == 0:
            os.makedirs(os.path.join(ckptdir, f'ckpt_epoch_{epoch}'), exist_ok=True) 
            checkpoint_path = os.path.join(ckptdir, f'ckpt_epoch_{epoch}', f'state.pth')
            to_save = {
                'epoch': epoch,
                'config': config,
                'max_accuracy': max_accuracy,
                'model_ema': model_ema.state_dict(),
            }
            if loss_scaler is not None:
                to_save["grad_scale_manager"] = loss_scaler.state_dict()
            logger.info(f"Saving checkpoint to {checkpoint_path}")
            torch.save(to_save, checkpoint_path)
        model.save_checkpoint(save_dir=ckptdir, tag=f'ckpt_epoch_{epoch}')
        print(f"rank[{dist.get_rank()}]: {ckptdir}/{f'ckpt_epoch_{epoch}'} saved")
        dist.barrier()
    else:
        if dist.get_rank() == 0:
            save_state = {'model': model.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        # 'lr_scheduler': lr_scheduler.state_dict(),
                        'max_accuracy': max_accuracy,
                        'scaler': loss_scaler.state_dict(),
                        'epoch': epoch,
                        'config': config}

            save_path = os.path.join(ckptdir, f'ckpt_epoch_{epoch}.pth')
            logger.info(f"{save_path} saving......")
            torch.save(save_state, save_path)
            logger.info(f"{save_path} saved !!!")


def get_grad_norm(parameters, norm_type=2):
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = list(filter(lambda p: p.grad is not None, parameters))
    norm_type = float(norm_type)
    total_norm = 0
    for p in parameters:
        param_norm = p.grad.data.norm(norm_type)
        total_norm += param_norm.item() ** norm_type
    total_norm = total_norm ** (1. / norm_type)
    return total_norm


def auto_resume_helper(config, output_dir):
    if config.model.params.deepspeed != '':
        dirs = os.listdir(output_dir)
        dirs = [d for d in dirs if d.startswith('ckpt_epoch')]
        print(f"All checkpoints founded in {output_dir}: {dirs}")
        if len(dirs) > 0:
            dirs = max([int(d.split('_')[-1]) for d in dirs])
            latest_checkpoint = os.path.join(output_dir, 'ckpt_epoch_{}'.format(dirs))
            print(f"The latest checkpoint founded: {latest_checkpoint}")
            resume_file = latest_checkpoint
        else:
            resume_file = None
    else:
        checkpoints = os.listdir(output_dir)
        checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
        print(f"All checkpoints founded in {output_dir}: {checkpoints}")
        if len(checkpoints) > 0:
            latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime)
            print(f"The latest checkpoint founded: {latest_checkpoint}")
            resume_file = latest_checkpoint
        else:
            resume_file = None
    return resume_file


def reduce_tensor(tensor):
    rt = tensor.clone()
    dist.all_reduce(rt, op=dist.ReduceOp.SUM)
    rt /= dist.get_world_size()
    return rt


def ampscaler_get_grad_norm(parameters, norm_type: float = 2.0) -> torch.Tensor:
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = [p for p in parameters if p.grad is not None]
    norm_type = float(norm_type)
    if len(parameters) == 0:
        return torch.tensor(0.)
    device = parameters[0].grad.device
    if norm_type == inf:
        total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
    else:
        total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(),
                                                        norm_type).to(device) for p in parameters]), norm_type)
    return total_norm


class NativeScalerWithGradNormCount:
    state_dict_key = "amp_scaler"

    def __init__(self):
        self._scaler = torch.cuda.amp.GradScaler()

    def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
        self._scaler.scale(loss).backward(create_graph=create_graph)
        if update_grad:
            if clip_grad is not None:
                assert parameters is not None
                self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
                norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
            else:
                self._scaler.unscale_(optimizer)
                norm = ampscaler_get_grad_norm(parameters)
            self._scaler.step(optimizer)
            self._scaler.update()
        else:
            norm = None
        return norm

    def state_dict(self):
        return self._scaler.state_dict()

    def load_state_dict(self, state_dict):
        self._scaler.load_state_dict(state_dict)