Spaces:
Runtime error
Runtime error
File size: 7,327 Bytes
7ae68fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
import os
import torch
import torch.distributed as dist
from torch._six import inf
def load_checkpoint(file_name, config, model, model_ema, optimizer, lr_scheduler, loss_scaler, logger):
if config.model.params.deepspeed != '':
file_name = file_name.split('/')
ckptdir = '/'.join(file_name[:-1])
tag = file_name[-1]
_, client_states = model.load_checkpoint(ckptdir, tag=tag)
print(client_states)
logger.info("Resume checkpoint %s" % file_name)
checkpoint = torch.load(
os.path.join(ckptdir, tag, "state.pth"), map_location="cpu"
)
msg = model_ema.load_state_dict(checkpoint['model_ema'])
logger.info(msg)
start_epoch = checkpoint["epoch"] + 1
max_accuracy = 0.0
if loss_scaler and "grad_scale_manager" in checkpoint:
loss_scaler.load_state_dict(checkpoint["grad_scale_manager"])
if 'max_accuracy' in checkpoint:
max_accuracy = checkpoint['max_accuracy']
else:
logger.info(f"==============> Resuming form {file_name}....................")
checkpoint = torch.load(file_name, map_location='cpu')
msg = model.load_state_dict(checkpoint['model'], strict=False)
logger.info(msg)
max_accuracy = 0.0
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
if 'lr_scheduler' in checkpoint:
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
logger.info(f"=> loaded successfully '{file_name}' (epoch {checkpoint['epoch']})")
if 'max_accuracy' in checkpoint:
max_accuracy = checkpoint['max_accuracy']
del checkpoint
torch.cuda.empty_cache()
return max_accuracy, start_epoch
def save_checkpoint(ckptdir, config, epoch, model, model_ema, max_accuracy, optimizer, lr_scheduler, loss_scaler, logger):
if config.model.params.deepspeed != '':
if dist.get_rank() == 0:
os.makedirs(os.path.join(ckptdir, f'ckpt_epoch_{epoch}'), exist_ok=True)
checkpoint_path = os.path.join(ckptdir, f'ckpt_epoch_{epoch}', f'state.pth')
to_save = {
'epoch': epoch,
'config': config,
'max_accuracy': max_accuracy,
'model_ema': model_ema.state_dict(),
}
if loss_scaler is not None:
to_save["grad_scale_manager"] = loss_scaler.state_dict()
logger.info(f"Saving checkpoint to {checkpoint_path}")
torch.save(to_save, checkpoint_path)
model.save_checkpoint(save_dir=ckptdir, tag=f'ckpt_epoch_{epoch}')
print(f"rank[{dist.get_rank()}]: {ckptdir}/{f'ckpt_epoch_{epoch}'} saved")
dist.barrier()
else:
if dist.get_rank() == 0:
save_state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
# 'lr_scheduler': lr_scheduler.state_dict(),
'max_accuracy': max_accuracy,
'scaler': loss_scaler.state_dict(),
'epoch': epoch,
'config': config}
save_path = os.path.join(ckptdir, f'ckpt_epoch_{epoch}.pth')
logger.info(f"{save_path} saving......")
torch.save(save_state, save_path)
logger.info(f"{save_path} saved !!!")
def get_grad_norm(parameters, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
total_norm = total_norm ** (1. / norm_type)
return total_norm
def auto_resume_helper(config, output_dir):
if config.model.params.deepspeed != '':
dirs = os.listdir(output_dir)
dirs = [d for d in dirs if d.startswith('ckpt_epoch')]
print(f"All checkpoints founded in {output_dir}: {dirs}")
if len(dirs) > 0:
dirs = max([int(d.split('_')[-1]) for d in dirs])
latest_checkpoint = os.path.join(output_dir, 'ckpt_epoch_{}'.format(dirs))
print(f"The latest checkpoint founded: {latest_checkpoint}")
resume_file = latest_checkpoint
else:
resume_file = None
else:
checkpoints = os.listdir(output_dir)
checkpoints = [ckpt for ckpt in checkpoints if ckpt.endswith('pth')]
print(f"All checkpoints founded in {output_dir}: {checkpoints}")
if len(checkpoints) > 0:
latest_checkpoint = max([os.path.join(output_dir, d) for d in checkpoints], key=os.path.getmtime)
print(f"The latest checkpoint founded: {latest_checkpoint}")
resume_file = latest_checkpoint
else:
resume_file = None
return resume_file
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= dist.get_world_size()
return rt
def ampscaler_get_grad_norm(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(),
norm_type).to(device) for p in parameters]), norm_type)
return total_norm
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = ampscaler_get_grad_norm(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict) |