Spaces:
Runtime error
Runtime error
File size: 5,267 Bytes
7ae68fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# --------------------------------------------------------
# InstructDiffusion
# Based on instruct-pix2pix (https://github.com/timothybrooks/instruct-pix2pix)
# Modified by Zigang Geng (zigang@mail.ustc.edu.cn)
# --------------------------------------------------------
from __future__ import annotations
import os
import math
import random
import sys
from argparse import ArgumentParser
import einops
import k_diffusion as K
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torch import autocast
import requests
sys.path.append("./stable_diffusion")
from stable_diffusion.ldm.util import instantiate_from_config
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
cfg_z = einops.repeat(z, "b ... -> (repeat b) ...", repeat=3)
cfg_sigma = einops.repeat(sigma, "b ... -> (repeat b) ...", repeat=3)
cfg_cond = {
"c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], cond["c_crossattn"][0]])],
"c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
}
out_cond, out_img_cond, out_txt_cond \
= self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
return 0.5 * (out_img_cond + out_txt_cond) + \
text_cfg_scale * (out_cond - out_img_cond) + \
image_cfg_scale * (out_cond - out_txt_cond)
def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
model = instantiate_from_config(config.model)
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if 'state_dict' in pl_sd:
pl_sd = pl_sd['state_dict']
m, u = model.load_state_dict(pl_sd, strict=False)
print(m, u)
return model
def main():
parser = ArgumentParser()
parser.add_argument("--resolution", default=512, type=int)
parser.add_argument("--steps", default=100, type=int)
parser.add_argument("--config", default="configs/instruct_diffusion.yaml", type=str)
parser.add_argument("--ckpt", default="checkpoints/v1-5-pruned-emaonly-adaption-task.ckpt", type=str)
parser.add_argument("--vae-ckpt", default=None, type=str)
parser.add_argument("--input", required=True, type=str)
parser.add_argument("--outdir", default="logs", type=str)
parser.add_argument("--edit", required=True, type=str)
parser.add_argument("--cfg-text", default=5.0, type=float)
parser.add_argument("--cfg-image", default=1.25, type=float)
parser.add_argument("--seed", type=int)
args = parser.parse_args()
config = OmegaConf.load(args.config)
model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
model.eval().cuda()
model_wrap = K.external.CompVisDenoiser(model)
model_wrap_cfg = CFGDenoiser(model_wrap)
null_token = model.get_learned_conditioning([""])
seed = random.randint(0, 100000) if args.seed is None else args.seed
if args.input.startswith("http"):
input_image = Image.open(requests.get(args.input, stream=True).raw).convert("RGB")
else:
input_image = Image.open(args.input).convert("RGB")
width, height = input_image.size
factor = args.resolution / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width_resize = int((width * factor) // 64) * 64
height_resize = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width_resize, height_resize), method=Image.Resampling.LANCZOS)
output_dir = args.outdir
os.makedirs(output_dir, exist_ok=True)
with torch.no_grad(), autocast("cuda"):
cond = {}
cond["c_crossattn"] = [model.get_learned_conditioning([args.edit])]
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
input_image = rearrange(input_image, "h w c -> 1 c h w").to(next(model.parameters()).device)
cond["c_concat"] = [model.encode_first_stage(input_image).mode()]
uncond = {}
uncond["c_crossattn"] = [null_token]
uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]
sigmas = model_wrap.get_sigmas(args.steps)
extra_args = {
"cond": cond,
"uncond": uncond,
"text_cfg_scale": args.cfg_text,
"image_cfg_scale": args.cfg_image,
}
torch.manual_seed(seed)
z = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args)
x = model.decode_first_stage(z)
x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0)
x = 255.0 * rearrange(x, "1 c h w -> h w c")
print(x.shape)
edited_image = Image.fromarray(x.type(torch.uint8).cpu().numpy())
edited_image = ImageOps.fit(edited_image, (width, height), method=Image.Resampling.LANCZOS)
edited_image.save(output_dir+'/output_'+args.input.split('/')[-1].split('.')[0]+'_seed'+str(seed)+'.jpg')
if __name__ == "__main__":
main()
|