Spaces:
Sleeping
Sleeping
File size: 41,082 Bytes
98e2ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 |
import sys
import os
import time
import logging
import torch
## Uncomment the following line to make the code deterministic and use CUBLAS_WORKSPACE_CONFIG=:4096:8
torch.use_deterministic_algorithms(True)
import json
import numpy as np
import random
import wandb
from omegaconf import OmegaConf, open_dict
from os import path
from collections import OrderedDict, defaultdict
from transformers import get_linear_schedule_with_warmup
from transformers import AutoModel, AutoTokenizer
from data_utils.utils import load_dataset, load_eval_dataset
import pytorch_utils.utils as utils
from torch.profiler import profile, record_function, ProfilerActivity
from model.entity_ranking_model import EntityRankingModel
from model.mention_proposal import MentionProposalModule
from data_utils.tensorize_dataset import TensorizeDataset
from pytorch_utils.optimization_utils import get_inverse_square_root_decay
from utils_evaluate import coref_evaluation
from typing import Dict, Union, List, Optional
from omegaconf import DictConfig
import copy
logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO)
logger = logging.getLogger()
loss_acc_template_dict = {
"total": 0.0,
"ment_loss": 0.0,
"coref": 0.0,
"mention_count": 0.0,
"processed_docs": 0.0,
"ment_correct": 0.0,
"ment_total": 0.0,
"ment_tp": 0.0,
"ment_pp": 0.0,
"ment_ap": 0.0,
}
class Experiment:
"""Class for training and evaluating coreference models."""
def __init__(self, config: DictConfig):
self.config = config
print("Seeded: ", config.seed)
print("Cuda Available: ", torch.cuda.is_available())
# Whether to train or not
self.eval_model: bool = not self.config.train
# Initialize dictionary to track key training variables
self.train_info = {
"val_perf": 0.0,
"global_steps": 0,
"num_stuck_evals": 0,
"peak_memory": 0.0,
}
self.wandbdata = {}
# Initialize model path attributes
self.model_path = self.config.paths.model_path
self.best_model_path = self.config.paths.best_model_path
if not self.eval_model:
# Step 1 - Initialize model
self._build_model()
# Step 2 - Load Data - Data processing choices such as tokenizer will depend on the model
self._load_data()
# Step 3 - Resume training
self._setup_training()
# Step 4 - Loading the checkpoint also restores the training metadata
self._load_previous_checkpoint()
# All set to resume training
# But first check if training is remaining
if self._is_training_remaining():
self.train()
# Perform final evaluation
if path.exists(self.best_model_path):
# Step 1 - Initialize model
self._initialize_best_model()
# Step 2 - Load evaluation data
self._load_data()
# Step 3 - Perform evaluation
self.perform_final_eval()
else:
logger.info("No model accessible!")
sys.exit(1)
def _build_model(self) -> None:
"""Constructs the model with given config."""
model_params: DictConfig = self.config.model
train_config: DictConfig = self.config.trainer
self.model = EntityRankingModel(
model_config=model_params, train_config=train_config
)
if torch.cuda.is_available():
self.model.cuda(device=self.config.device)
# Print model
utils.print_model_info(self.model)
sys.stdout.flush()
def _load_data(self):
"""Loads and processes the training and evaluation data.
Loads the data concerning all the specified datasets for training and eval.
The first part of this method loads all the data from the preprocessed jsonline files.
In the second half, the loaded data is tensorized for consumption by the model.
Apart from loading and processing the data, the method also populates important
attributes such as:
num_train_docs_map (dict): Dictionary to maintain the number of training
docs per dataset which is useful for implementing sampling in joint training.
num_training_steps (int): Number of total training steps.
eval_per_k_steps (int): Number of gradient updates before each evaluation.
"""
self.data_iter_map, self.conll_data_dir, self.num_split_docs_map = (
{},
{},
{"train": {}, "dev": {}, "test": {}},
)
raw_data_map = {}
max_segment_len: int = self.config.model.doc_encoder.transformer.max_segment_len
model_name: str = self.config.model.doc_encoder.transformer.name
add_speaker_tokens: bool = self.config.model.doc_encoder.add_speaker_tokens
base_data_dir: str = path.abspath(self.config.paths.base_data_dir)
# Load data
for dataset_name, attributes in self.config.datasets.items():
num_train_docs: Optional[int] = attributes.get("num_train_docs", None)
num_dev_docs: Optional[int] = attributes.get("num_dev_docs", None)
num_test_docs: Optional[int] = attributes.get("num_test_docs", None)
singleton_file: Optional[str] = attributes.get("singleton_file", None)
external_md_file: Optional[str] = attributes.get("external_md_file", None)
if singleton_file is not None:
singleton_file = path.join(base_data_dir, singleton_file)
if path.exists(singleton_file):
logger.info(f"Singleton file found: {singleton_file}")
if external_md_file is not None:
external_md_file = path.join(base_data_dir, external_md_file)
if path.exists(external_md_file):
logger.info(
f"External mention detector file found: {external_md_file}"
)
# Data directory is a function of dataset name and tokenizer used
data_dir = path.join(path.join(base_data_dir, dataset_name), model_name)
# Check if speaker tokens are added
if add_speaker_tokens:
pot_data_dir = path.join(
path.join(path.join(base_data_dir, dataset_name)),
model_name + "_speaker",
)
if path.exists(pot_data_dir):
data_dir = pot_data_dir
# Datasets such as litbank have cross validation splits
if attributes.get("cross_val_split", None) is not None:
data_dir = path.join(data_dir, str(attributes.get("cross_val_split")))
logger.info("Data directory: %s" % data_dir)
# CoNLL data dir
if attributes.get("has_conll", False):
conll_dir = path.join(
path.join(path.join(base_data_dir, dataset_name)), "conll"
)
if attributes.get("cross_val_split", None) is not None:
# LitBank like datasets have cross validation splits
conll_dir = path.join(
conll_dir, str(attributes.get("cross_val_split"))
)
if path.exists(conll_dir):
self.conll_data_dir[dataset_name] = conll_dir
self.num_split_docs_map["train"][dataset_name] = num_train_docs
self.num_split_docs_map["dev"][dataset_name] = num_dev_docs
self.num_split_docs_map["test"][dataset_name] = num_test_docs
if self.eval_model:
print("In Eval Model DataLoader")
raw_data_map[dataset_name] = load_eval_dataset(
data_dir,
external_md_file=external_md_file,
max_segment_len=max_segment_len,
dataset_name=dataset_name,
)
else:
raw_data_map[dataset_name] = load_dataset(
data_dir,
singleton_file=singleton_file,
num_dev_docs=num_dev_docs,
num_test_docs=num_test_docs,
max_segment_len=max_segment_len,
dataset_name=dataset_name,
)
# Tensorize data
data_processor = TensorizeDataset(
self.model.get_tokenizer(),
remove_singletons=(not self.config.keep_singletons),
)
if self.eval_model:
for split in ["dev", "test"]:
self.data_iter_map[split] = {}
for dataset in raw_data_map:
for split in raw_data_map[dataset]:
self.data_iter_map[split][dataset] = data_processor.tensorize_data(
raw_data_map[dataset][split], training=False
)
else:
# Training
for split in ["train", "dev", "test"]:
self.data_iter_map[split] = {}
training = split == "train"
for dataset in raw_data_map:
self.data_iter_map[split][dataset] = data_processor.tensorize_data(
raw_data_map[dataset][split], training=training
)
# Estimate number of training steps
if self.config.trainer.eval_per_k_steps is None:
# Eval steps is 1 epoch (with subsampling) of all the datasets used in joint training
self.config.trainer.eval_per_k_steps = sum(
self.num_split_docs_map["train"].values()
)
self.config.trainer.num_training_steps = (
self.config.trainer.eval_per_k_steps * self.config.trainer.max_evals
)
logger.info(
f"Number of training steps: {self.config.trainer.num_training_steps}"
)
logger.info(f"Eval per k steps: {self.config.trainer.eval_per_k_steps}")
def _load_previous_checkpoint(self):
"""Loads the last checkpoint or best checkpoint."""
# Resume training
print("Model Path: ", self.model_path)
print("Model Initialised:", torch.cuda.memory_summary(self.config.device))
if path.exists(self.model_path):
self.load_model(self.model_path, last_checkpoint=True)
logger.info("Model loaded\n")
print(
"Loaded Model Returned:", torch.cuda.memory_summary(self.config.device)
)
else:
# Starting training
logger.info("Model initialized\n")
sys.stdout.flush()
def _is_training_remaining(self):
"""Check if training is done or remaining.
There are two cases where we don't resume training:
(a) The dev performance has not improved for the allowed patience parameter number of evaluations.
(b) Number of gradient updates is already >= Total training steps.
Returns:
bool: If true, we resume training. Otherwise do final evaluation.
"""
if self.train_info["num_stuck_evals"] >= self.config.trainer.patience:
return False
if self.train_info["global_steps"] >= self.config.trainer.num_training_steps:
return False
return True
def _setup_training(self):
"""Initialize optimizer and bookkeeping variables for training."""
# Dictionary to track key training variables
self.train_info = {
"val_perf": 0.0,
"global_steps": 0,
"num_stuck_evals": 0,
"peak_memory": 0.0,
"max_mem": 0.0,
}
# Initialize optimizers
self._initialize_optimizers()
def _initialize_optimizers(self):
"""Initialize model + optimizer(s). Check if there's a checkpoint in which case we resume from there."""
optimizer_config: DictConfig = self.config.optimizer
train_config: DictConfig = self.config.trainer
self.optimizer, self.optim_scheduler = {}, {}
if torch.cuda.is_available():
# Gradient scaler required for mixed precision training
self.scaler = torch.GradScaler("cuda")
else:
self.scaler = None
# Optimizer for clustering params
self.optimizer["mem"] = torch.optim.Adam(
self.model.get_params()[1], lr=optimizer_config.init_lr, eps=1e-6
)
if optimizer_config.lr_decay == "inv":
self.optim_scheduler["mem"] = get_inverse_square_root_decay(
self.optimizer["mem"], num_warmup_steps=0
)
else:
# No warmup steps for model params
self.optim_scheduler["mem"] = get_linear_schedule_with_warmup(
self.optimizer["mem"],
num_warmup_steps=0,
num_training_steps=train_config.num_training_steps,
)
if self.config.model.doc_encoder.finetune:
# Optimizer for document encoder
no_decay = [
"bias",
"LayerNorm.weight",
] # No weight decay for bias and layernorm weights
encoder_params = self.model.get_params(named=True)[0]
grouped_param = [
{
"params": [
p
for n, p in encoder_params
if not any(nd in n for nd in no_decay)
],
"lr": optimizer_config.fine_tune_lr,
"weight_decay": 1e-2,
},
{
"params": [
p for n, p in encoder_params if any(nd in n for nd in no_decay)
],
"lr": optimizer_config.fine_tune_lr,
"weight_decay": 0.0,
},
]
self.optimizer["doc"] = torch.optim.AdamW(
grouped_param, lr=optimizer_config.fine_tune_lr, eps=1e-6
)
# Scheduler for document encoder
num_warmup_steps = int(0.1 * train_config.num_training_steps)
if optimizer_config.lr_decay == "inv":
self.optim_scheduler["doc"] = get_inverse_square_root_decay(
self.optimizer["doc"], num_warmup_steps=num_warmup_steps
)
else:
self.optim_scheduler["doc"] = get_linear_schedule_with_warmup(
self.optimizer["doc"],
num_warmup_steps=num_warmup_steps,
num_training_steps=train_config.num_training_steps,
)
def agg(self, datadepdict):
agg_dict = defaultdict(float)
for dataset in datadepdict:
for key in datadepdict[dataset]:
agg_dict[key] += datadepdict[dataset][key]
agg_dict["loss_norm"] = (
agg_dict["coref"] / agg_dict["mention_count"]
+ agg_dict["ment_loss"] / agg_dict["ment_total"]
if agg_dict["mention_count"] > 0
else 0
)
agg_dict["ment_acc"] = agg_dict["ment_correct"] / agg_dict["ment_total"]
agg_dict["ment_prec"] = (
agg_dict["ment_tp"] / agg_dict["ment_pp"] if agg_dict["ment_pp"] > 0 else 0
)
agg_dict["ment_rec"] = (
agg_dict["ment_tp"] / agg_dict["ment_ap"] if agg_dict["ment_ap"] > 0 else 0
)
agg_dict["ment_f1"] = (
2
* (agg_dict["ment_prec"] * agg_dict["ment_rec"])
/ (agg_dict["ment_prec"] + agg_dict["ment_rec"])
if (agg_dict["ment_prec"] + agg_dict["ment_rec"]) > 0
else 0
)
return agg_dict
def train(self) -> None:
"""Method for training the model.
This method implements the training loop.
Within the training loop, the model is periodically evaluated on the dev set(s).
"""
model, optimizer, scheduler, scaler = (
self.model,
self.optimizer,
self.optim_scheduler,
self.scaler,
)
model.train()
optimizer_config, train_config = self.config.optimizer, self.config.trainer
start_time = time.time()
eval_time = {"total_time": 0, "num_evals": 0}
print("Started Training..")
while True:
logger.info("Steps done %d" % (self.train_info["global_steps"]))
train_data = self.runtime_load_dataset("train")
np.random.shuffle(train_data)
logger.info("Per epoch training steps: %d" % len(train_data))
logger.info("Per epoch training steps: %d" % len(train_data))
encoder_params, task_params = model.get_params()
stat_per_dataset = defaultdict(
lambda: copy.deepcopy(loss_acc_template_dict)
)
agg_stat = self.agg
# Training "epoch" -> May not correspond to actual epoch
for cur_document in train_data:
def handle_example(document: Dict) -> Union[None, float]:
self.train_info["global_steps"] += 1
for key in optimizer:
optimizer[key].zero_grad()
loss_dict: Dict = model.forward_training(document)
total_loss = loss_dict["total"]
if total_loss is None or torch.isnan(total_loss):
print("Problem with Loss. Should not occur often")
return None
total_loss.backward()
# Gradient clipping
try:
for name_ind, param_group in enumerate(
[encoder_params, task_params]
):
torch.nn.utils.clip_grad_norm_(
param_group,
optimizer_config.max_gradient_norm,
error_if_nonfinite=True,
)
except RuntimeError:
print("Non Finite Gradient")
return None
for key in optimizer:
self.wandbdata[key + "_lr"] = scheduler[key].get_last_lr()[0]
for key in optimizer:
optimizer[key].step()
scheduler[key].step()
loss_dict_items = {}
for key in loss_dict:
loss_dict_items[key] = loss_dict[key].item()
dataset_name = document["dataset_name"]
# print(f"Total loss {cur_document['doc_key']}: {total_loss.item()}")
for key in loss_dict_items:
stat_per_dataset[dataset_name][key] += loss_dict_items[key]
stat_per_dataset[dataset_name]["processed_docs"] += 1
return total_loss.item()
loss = handle_example(cur_document)
if self.train_info["global_steps"] % train_config.log_frequency == 0:
max_mem = (
(
torch.cuda.max_memory_allocated(self.config.device)
/ (1024**3)
)
if torch.cuda.is_available()
else 0.0
)
if self.train_info.get("max_mem", 0.0) < max_mem:
self.train_info["max_mem"] = max_mem
if loss is not None:
logger.info(
"{} {:.3f} Max mem {:.1f} GB".format(
cur_document["doc_key"],
loss,
max_mem,
)
)
sys.stdout.flush()
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
if train_config.eval_per_k_steps and (
self.train_info["global_steps"] % train_config.eval_per_k_steps == 0
):
print("Eval needs to be done here")
coref_dict = {}
print(stat_per_dataset)
if self.config.use_wandb:
self._wandb_log(
split="train",
stat_per_dataset=stat_per_dataset,
agg_stat=agg_stat,
coref_dict=coref_dict,
step=self.train_info["global_steps"]
// train_config.eval_per_k_steps,
)
stat_per_dataset = defaultdict(
lambda: copy.deepcopy(loss_acc_template_dict)
)
macro_fscore = self.periodic_model_eval()
model.train()
# Get elapsed time
elapsed_time = time.time() - start_time
start_time = time.time()
logger.info(
"Steps: %d, Micro F1: %.1f, Max Micro F1: %.1f, Time: %.2f"
% (
self.train_info["global_steps"],
macro_fscore,
self.train_info["val_perf"],
elapsed_time,
)
)
# Check stopping criteria
if not self._is_training_remaining():
break
# Check stopping criteria
if not self._is_training_remaining():
break
logger.handlers[0].flush()
def runtime_load_dataset(self, split):
# Shuffle and load the training data
data = []
for dataset, dataset_data in self.data_iter_map[split].items():
np.random.shuffle(
dataset_data
) ### Commenting this so that we can have a deterministic training
if self.num_split_docs_map[split].get(dataset, None) is not None:
# Subsampling the data - This is useful in joint training
logger.info(
f"{dataset}: Subsampled {self.num_split_docs_map[split].get(dataset)}"
)
random_indices = range(self.num_split_docs_map[split].get(dataset))
data += [dataset_data[idx] for idx in random_indices]
else:
data += dataset_data
return data
def _wandb_log(self, split, stat_per_dataset, agg_stat, coref_dict, step=None):
for dataset_name in stat_per_dataset:
for metric_vals in stat_per_dataset[dataset_name]:
wandb.log(
data={
f"{split}/{dataset_name}/{metric_vals}": stat_per_dataset[
dataset_name
][metric_vals]
},
step=step,
)
if stat_per_dataset[dataset_name]["mention_count"] > 0.0:
ment_prec = (
stat_per_dataset[dataset_name]["ment_tp"]
/ stat_per_dataset[dataset_name]["ment_pp"]
if stat_per_dataset[dataset_name]["ment_pp"] > 0
else 0
)
ment_rec = (
stat_per_dataset[dataset_name]["ment_tp"]
/ stat_per_dataset[dataset_name]["ment_ap"]
if stat_per_dataset[dataset_name]["ment_ap"] > 0
else 0
)
ment_f1 = (
2 * (ment_prec * ment_rec) / (ment_prec + ment_rec)
if (ment_prec + ment_rec) > 0
else 0
)
wandb.log(
data={
f"{split}/{dataset_name}/loss_norm": stat_per_dataset[
dataset_name
]["coref"]
/ stat_per_dataset[dataset_name]["mention_count"]
+ stat_per_dataset[dataset_name]["ment_loss"]
/ stat_per_dataset[dataset_name]["ment_total"],
f"{split}/{dataset_name}/ment_acc": stat_per_dataset[
dataset_name
]["ment_correct"]
/ stat_per_dataset[dataset_name]["ment_total"],
f"{split}/{dataset_name}/ment_prec": ment_prec,
f"{split}/{dataset_name}/ment_rec": ment_rec,
f"{split}/{dataset_name}/ment_f1": ment_f1,
},
step=step,
)
else:
print("No mentions processed. Should not occur many times.")
if agg_stat:
for metric in agg_stat(stat_per_dataset):
wandb.log(
data={f"{split}/{metric}": agg_stat(stat_per_dataset)[metric]},
step=step,
)
for dataset in coref_dict:
for key in coref_dict[dataset]:
# Log result for individual metrics
if isinstance(coref_dict[dataset][key], dict):
wandb.log(
data={
f"{split}/{dataset}/{key}": coref_dict[dataset][key].get(
"fscore", 0.0
)
},
step=step,
)
# Log the overall F-score
wandb.log(
data={
f"{split}/{dataset}/CoNLL": coref_dict[dataset].get("fscore", 0.0)
},
step=step,
)
wandb.log(
data={
f"{split}/{dataset}/Micro-F1": coref_dict[dataset].get(
"f1_micro", 0.0
)
},
step=step,
)
wandb.log(
data={
f"{split}/{dataset}/Macro-F1": coref_dict[dataset].get(
"f1_macro", 0.0
)
},
step=step,
)
wandb.log(data=self.wandbdata, step=step)
@torch.no_grad()
def periodic_model_eval(self) -> float:
"""Method for evaluating and saving the model during the training loop.
Returns:
float: Average CoNLL F-score over all the development sets of datasets.
"""
self.model.eval()
## Dev Loss Calculations:
dev_data = self.runtime_load_dataset("dev")
np.random.shuffle(dev_data)
stat_per_dataset = defaultdict(lambda: copy.deepcopy(loss_acc_template_dict))
agg_stat = self.agg
for cur_document in dev_data:
def handle_example(document: Dict) -> Union[None, float]:
loss_dict: Dict = self.model.forward_training(document)
total_loss = loss_dict["total"]
if total_loss is None or torch.isnan(total_loss):
print("Problem with Loss. Should not occur many times")
return None
loss_dict_items = {}
for key in loss_dict:
loss_dict_items[key] = loss_dict[key].item()
dataset_name = document["dataset_name"]
for key in loss_dict_items:
stat_per_dataset[dataset_name][key] += loss_dict_items[key]
stat_per_dataset[dataset_name]["processed_docs"] += 1
return total_loss.item()
loss = handle_example(cur_document)
if loss is None:
continue
# Dev performance
coref_dict = {}
train_config = self.config.trainer
for dataset in self.data_iter_map["dev"]:
for go in [False]:
for tf in [False]:
result_dict = coref_evaluation(
self.config,
self.model,
self.data_iter_map,
dataset,
teacher_force=tf,
gold_mentions=go,
_iter="_"
+ str(
self.train_info["global_steps"]
// train_config.eval_per_k_steps
),
conll_data_dir=self.conll_data_dir,
)
coref_dict[dataset] = result_dict
if self.config.use_wandb:
self._wandb_log(
split="dev",
stat_per_dataset=stat_per_dataset,
agg_stat=agg_stat,
coref_dict=coref_dict,
step=self.train_info["global_steps"] // train_config.eval_per_k_steps,
)
# Calculate Mean F-score
fscore = sum([coref_dict[dataset]["fscore"] for dataset in coref_dict]) / len(
coref_dict
)
micro_fscore = sum(
[coref_dict[dataset]["f1_micro"] for dataset in coref_dict]
) / len(coref_dict)
macro_fscore = sum(
[coref_dict[dataset]["f1_macro"] for dataset in coref_dict]
) / len(coref_dict)
logger.info(
"Avg Macro F1: %.1f, Max Micro F1: %.1f"
% (macro_fscore, self.train_info["val_perf"])
)
logger.info("Avg Macro F1: %.1f" % (macro_fscore))
# Update model if dev performance improves
if macro_fscore > self.train_info["val_perf"]:
# Update training bookkeeping variables
self.train_info["num_stuck_evals"] = 0
self.train_info["val_perf"] = macro_fscore
# Save the best model
logger.info("Saving best model")
self.save_model(self.best_model_path, last_checkpoint=False)
else:
self.train_info["num_stuck_evals"] += 1
# Save model
if self.config.trainer.to_save_model:
self.save_model(self.model_path, last_checkpoint=True)
# Go back to training mode
self.model.train()
return macro_fscore
@torch.no_grad()
def perform_final_eval(self) -> None:
"""Method to evaluate the model after training has finished."""
self.model.eval()
base_output_dict = OmegaConf.to_container(self.config)
perf_summary = {"best_perf": self.train_info["val_perf"]}
if self.config.paths.model_dir:
perf_summary["model_dir"] = path.normpath(self.config.paths.model_dir)
logger.info(
"Max training memory: %.1f GB" % self.train_info.get("max_mem", 0.0)
)
logger.info("Validation performance: %.1f" % self.train_info["val_perf"])
perf_file_dict = {}
dataset_output_dict = {}
for split in ["dev", "test"]:
perf_summary[split] = {}
logger.info("\n")
logger.info("%s" % split.capitalize())
coref_dict = {}
for dataset in self.data_iter_map.get(split, []):
dataset_dir = path.join(self.config.paths.model_dir, dataset)
if not path.exists(dataset_dir):
os.makedirs(dataset_dir)
if dataset not in dataset_output_dict:
dataset_output_dict[dataset] = {}
if dataset not in perf_file_dict:
perf_file_dict[dataset] = path.join(dataset_dir, f"perf.json")
print("Dataset Name:", self.config.datasets[dataset].name)
logger.info("Dataset: %s\n" % self.config.datasets[dataset].name)
for go in [False]:
for tf in [False]:
result_dict = coref_evaluation(
self.config,
self.model,
self.data_iter_map,
dataset=dataset,
split=split,
teacher_force=tf,
gold_mentions=go,
final_eval=True,
conll_data_dir=self.conll_data_dir,
)
coref_dict[dataset] = result_dict
dataset_output_dict[dataset][split] = result_dict
perf_summary[split][dataset] = result_dict["f1_micro"]
if self.config.use_wandb:
self._wandb_log(
split=split,
stat_per_dataset={},
agg_stat=None,
coref_dict=coref_dict,
step=None,
)
sys.stdout.flush()
for dataset, output_dict in dataset_output_dict.items():
perf_file = perf_file_dict[dataset]
json.dump(output_dict, open(perf_file, "w"), indent=2)
logger.info("Final performance summary at %s" % path.abspath(perf_file))
summary_file = path.join(self.config.paths.model_dir, "perf.json")
json.dump(perf_summary, open(summary_file, "w"), indent=2)
logger.info("Performance summary file: %s" % path.abspath(summary_file))
def _initialize_best_model(self):
checkpoint = torch.load(
self.best_model_path,
map_location="cpu",
)
config = checkpoint["config"]
## Due to version changes -- these changes are necessary
# if
if self.config.get("override_encoder", False):
model_config = config.model
print(type(self.config.model.doc_encoder.transformer))
print(self.config.model.doc_encoder.transformer)
model_config.doc_encoder.transformer = (
self.config.model.doc_encoder.transformer
)
# Override memory
# For e.g., can test with a different bounded memory size
if self.config.get("override_memory", False):
model_config = config.model
model_config.memory = self.config.model.memory
with open_dict(config):
print("Config change")
config.model.mention_params.ext_ment = (
self.config.model.mention_params.ext_ment
)
config = utils.fill_missing_configs(config, self.config)
print("Type: ", config.model.memory.type)
self.config.model = config.model
self.train_info = checkpoint["train_info"]
if self.config.model.doc_encoder.finetune:
# Load the document encoder params if encoder is finetuned
doc_encoder_dir = path.join(
path.dirname(self.best_model_path),
self.config.paths.doc_encoder_dirname,
)
if path.exists(doc_encoder_dir):
logger.info(
"Loading document encoder from %s" % path.abspath(doc_encoder_dir)
)
config.model.doc_encoder.transformer.model_str = doc_encoder_dir
self.model = EntityRankingModel(config.model, config.trainer)
# Document encoder parameters will be loaded via the huggingface initialization
self.model.load_state_dict(checkpoint["model"], strict=False)
if torch.cuda.is_available():
self.model.cuda(device=self.config.device)
def load_model(self, location: str, last_checkpoint=True) -> None:
"""Load model from given location.
Args:
location: str
Location of checkpoint
last_checkpoint: bool
Whether the checkpoint is the last one saved or not.
If false, don't load optimizers, schedulers, and other training variables.
"""
checkpoint = torch.load(location, map_location="cpu")
logger.info("Loading model from %s" % path.abspath(location))
# self.config = checkpoint["config"] ## Commented out so that it does not load the config of the trained model. Removed comment
self.model.load_state_dict(
checkpoint["model"], strict=False
) ## No encoder in this model so strict=False is compulsary. No other weight missing. Checked
# self.train_info = checkpoint["train_info"] ## No train info transfer too. ## Transferring
if self.config.model.doc_encoder.finetune:
# Load the document encoder params if encoder is finetuned
doc_encoder_dir = path.join(
path.dirname(location), self.config.paths.doc_encoder_dirname
)
logger.info(
"Loading document encoder from %s" % path.abspath(doc_encoder_dir)
)
# Load the encoder
self.model.mention_proposer.doc_encoder.lm_encoder = (
AutoModel.from_pretrained(pretrained_model_name_or_path=doc_encoder_dir)
)
self.model.mention_proposer.doc_encoder.tokenizer = (
AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=doc_encoder_dir,
clean_up_tokenization_spaces=True,
)
)
if self.model.mention_proposer.doc_encoder.config.finetune:
self.model.mention_proposer.doc_encoder.lm_encoder.gradient_checkpointing_enable()
if torch.cuda.is_available():
self.model.cuda(device=self.config.device)
print("Loaded Model:", torch.cuda.memory_summary())
print(
"Gradient checkpointing enabled? ", torch.autograd.grad_checkpoint_enabled()
)
del checkpoint
torch.cuda.empty_cache()
def save_model(self, location: os.PathLike, last_checkpoint=True) -> None:
"""Save model.
Args:
location: Location of checkpoint
last_checkpoint:
Whether the checkpoint is the last one saved or not.
If false, don't save optimizers and schedulers which take up a lot of space.
"""
model_state_dict = OrderedDict(self.model.state_dict())
doc_encoder_state_dict = {}
# Separate the doc_encoder state dict
# We will save the model in two parts:
# (a) Doc encoder parameters - Useful for final upload to huggingface
# (b) Rest of the model parameters, optimizers, schedulers, and other bookkeeping variables
for key in self.model.state_dict():
if "lm_encoder." in key:
doc_encoder_state_dict[key] = model_state_dict[key]
del model_state_dict[key]
# Save the document encoder params
if self.config.model.doc_encoder.finetune:
doc_encoder_dir = path.join(
path.dirname(location), self.config.paths.doc_encoder_dirname
)
if not path.exists(doc_encoder_dir):
os.makedirs(doc_encoder_dir)
logger.info(f"Encoder saved at {path.abspath(doc_encoder_dir)}")
# Save the encoder
self.model.mention_proposer.doc_encoder.lm_encoder.save_pretrained(
save_directory=doc_encoder_dir, save_config=True
)
# Save the tokenizer
self.model.mention_proposer.doc_encoder.tokenizer.save_pretrained(
doc_encoder_dir
)
save_dict = {
"train_info": self.train_info,
"model": model_state_dict,
"rng_state": torch.get_rng_state(),
"np_rng_state": np.random.get_state(),
"config": self.config,
}
if self.scaler is not None:
save_dict["scaler"] = self.scaler.state_dict()
if last_checkpoint:
# For last checkpoint save the optimizer and scheduler states as well
save_dict["optimizer"] = {}
save_dict["scheduler"] = {}
param_groups: List[str] = (
["mem", "doc"] if self.config.model.doc_encoder.finetune else ["mem"]
)
for param_group in param_groups:
save_dict["optimizer"][param_group] = self.optimizer[
param_group
].state_dict()
save_dict["scheduler"][param_group] = self.optim_scheduler[
param_group
].state_dict()
torch.save(save_dict, location)
logger.info(f"Model saved at: {path.abspath(location)}")
|