File size: 847 Bytes
2b9eeb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import datasets
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import gradio as gr

dataset = datasets.load_dataset("beans")

extractor = AutoFeatureExtractor.from_pretrained("Kavindu99/leaf-classifier")
model = AutoModelForImageClassification.from_pretrained("Kavindu99/leaf-classifier")

labels = dataset['train'].features['labels'].names

def classify(im):
  features = feature_extractor(im, return_tensors='pt')
  logits = model(features["pixel_values"])[-1]
  probability = torch.nn.functional.softmax(logits, dim=-1)
  probs = probability[0].detach().numpy()
  confidences = {label: float(probs[i]) for i, label in enumerate(labels)} 
  return confidences


interface = gr.Interface(classify, inputs='image', outputs='label', examples=['sample-img.png'],title="Leaf Classifier")

interface.launch(debug=True)