File size: 5,162 Bytes
3d49622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao (Bin.Xiao@microsoft.com)
# ------------------------------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
import torch

class BRG2Tensor_transform(object):
    def __call__(self, pic):
        img = torch.from_numpy(pic.transpose((2, 0, 1)))
        if isinstance(img, torch.ByteTensor):
            return img.float()
        else:
            return img

class BGR2RGB_transform(object):
    def __call__(self, tensor):
        return tensor[[2,1,0],:,:]

def flip_back(output_flipped, matched_parts):
    '''
    ouput_flipped: numpy.ndarray(batch_size, num_joints, height, width)
    '''
    assert output_flipped.ndim == 4,\
        'output_flipped should be [batch_size, num_joints, height, width]'

    output_flipped = output_flipped[:, :, :, ::-1]

    for pair in matched_parts:
        tmp = output_flipped[:, pair[0], :, :].copy()
        output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
        output_flipped[:, pair[1], :, :] = tmp

    return output_flipped


def fliplr_joints(joints, joints_vis, width, matched_parts):
    """
    flip coords
    """
    # Flip horizontal
    joints[:, 0] = width - joints[:, 0] - 1

    # Change left-right parts
    for pair in matched_parts:
        joints[pair[0], :], joints[pair[1], :] = \
            joints[pair[1], :], joints[pair[0], :].copy()
        joints_vis[pair[0], :], joints_vis[pair[1], :] = \
            joints_vis[pair[1], :], joints_vis[pair[0], :].copy()

    return joints*joints_vis, joints_vis


def transform_preds(coords, center, scale, input_size):
    target_coords = np.zeros(coords.shape)
    trans = get_affine_transform(center, scale, 0, input_size, inv=1)
    for p in range(coords.shape[0]):
        target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
    return target_coords

def transform_parsing(pred, center, scale, width, height, input_size):

    trans = get_affine_transform(center, scale, 0, input_size, inv=1)
    target_pred = cv2.warpAffine(
            pred,
            trans,
            (int(width), int(height)), #(int(width), int(height)),
            flags=cv2.INTER_NEAREST,
            borderMode=cv2.BORDER_CONSTANT,
            borderValue=(0))

    return target_pred

def transform_logits(logits, center, scale, width, height, input_size):

    trans = get_affine_transform(center, scale, 0, input_size, inv=1)
    channel = logits.shape[2]
    target_logits = []
    for i in range(channel):
        target_logit = cv2.warpAffine(
            logits[:,:,i],
            trans,
            (int(width), int(height)), #(int(width), int(height)),
            flags=cv2.INTER_LINEAR,
            borderMode=cv2.BORDER_CONSTANT,
            borderValue=(0))
        target_logits.append(target_logit)
    target_logits = np.stack(target_logits,axis=2)

    return target_logits


def get_affine_transform(center,
                         scale,
                         rot,
                         output_size,
                         shift=np.array([0, 0], dtype=np.float32),
                         inv=0):
    if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
        print(scale)
        scale = np.array([scale, scale])

    scale_tmp = scale

    src_w = scale_tmp[0]
    dst_w = output_size[1]
    dst_h = output_size[0]

    rot_rad = np.pi * rot / 180
    src_dir = get_dir([0, src_w * -0.5], rot_rad)
    dst_dir = np.array([0, (dst_w-1) * -0.5], np.float32)

    src = np.zeros((3, 2), dtype=np.float32)
    dst = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    dst[0, :] = [(dst_w-1) * 0.5, (dst_h-1) * 0.5]
    dst[1, :] = np.array([(dst_w-1) * 0.5, (dst_h-1) * 0.5]) + dst_dir

    src[2:, :] = get_3rd_point(src[0, :], src[1, :])
    dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def affine_transform(pt, t):
    new_pt = np.array([pt[0], pt[1], 1.]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2]


def get_3rd_point(a, b):
    direct = a - b
    return b + np.array([-direct[1], direct[0]], dtype=np.float32)


def get_dir(src_point, rot_rad):
    sn, cs = np.sin(rot_rad), np.cos(rot_rad)

    src_result = [0, 0]
    src_result[0] = src_point[0] * cs - src_point[1] * sn
    src_result[1] = src_point[0] * sn + src_point[1] * cs

    return src_result


def crop(img, center, scale, output_size, rot=0):
    trans = get_affine_transform(center, scale, rot, output_size)

    dst_img = cv2.warpAffine(img,
                             trans,
                             (int(output_size[1]), int(output_size[0])),
                             flags=cv2.INTER_LINEAR)

    return dst_img