File size: 1,630 Bytes
5a486d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python
# -*- encoding: utf-8 -*-

"""
@Author  :   Peike Li
@Contact :   peike.li@yahoo.com
@File    :   psp.py
@Time    :   8/4/19 3:36 PM
@Desc    :   
@License :   This source code is licensed under the license found in the 
             LICENSE file in the root directory of this source tree.
"""

import torch
import torch.nn as nn
from torch.nn import functional as F

from modules import InPlaceABNSync


class PSPModule(nn.Module):
    """
    Reference:
        Zhao, Hengshuang, et al. *"Pyramid scene parsing network."*
    """
    def __init__(self, features, out_features=512, sizes=(1, 2, 3, 6)):
        super(PSPModule, self).__init__()

        self.stages = []
        self.stages = nn.ModuleList([self._make_stage(features, out_features, size) for size in sizes])
        self.bottleneck = nn.Sequential(
            nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1,
                      bias=False),
            InPlaceABNSync(out_features),
        )

    def _make_stage(self, features, out_features, size):
        prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
        conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False)
        bn = InPlaceABNSync(out_features)
        return nn.Sequential(prior, conv, bn)

    def forward(self, feats):
        h, w = feats.size(2), feats.size(3)
        priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True) for stage in
                  self.stages] + [feats]
        bottle = self.bottleneck(torch.cat(priors, 1))
        return bottle